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Glossary

Byzantine node A participant in a distributed system which tries to dam-
age its operation intentionally, e.g., by not forwarding messages to other
participants and/or sending conflicting messages to different participants.

Consensus The problem of agreeing on a specific data or value in distributed
multi-agent systems in presence of faulty processes.

Coordinator A trusted entity issuing milestones in order to guarantee finality
and protect the Tangle against attacks.

Dictionary attack A form of brute force attack technique for defeating an
authentication mechanism by trying to determine its passphrase by trying
millions of likely possibilities, such as words in a dictionary.

Eclipse attack A cyber-attack that aims to isolate and attack a specific user,
rather than the whole network.

Genesis The first transaction ever generated in the Tangle.

Heartbeat A periodic signal generated by hardware or software to indicate
normal operation or to synchronize other parts of a computer system.

History The list of transactions directly or indirectly approved by a given
transaction.

Milestone A special transaction issued by the Coordinator. One of its features
is to determine finality of the transactions it approves.

Neighboring nodes Nodes sharing the same link in a network.

Node A machine which is part of the IOTA network. Its role is to issue new
transactions and to validate already existing ones.

Peering The procedure of discovering and connecting to other network nodes.

Proof-of-Work A piece of data which is difficult (costly, time-consuming) to
produce but easy for others to verify and which satisfies certain require-
ments.

Rainbow table attack A precomputed table for reversing cryptographic hash
functions.

Random walk A mathematical object that describes a path that consists of
a succession of random steps on some mathematical space.

Salt A random number used as an additional input to a one-way function that
hashes data.
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Social engineering The use of deception to manipulate individuals into di-
vulging confidential or personal information that may be used for fraudu-
lent purposes.

Sybil attack A Sybil attack is an attempt to gain control over a peer-to-peer
network by forging multiple fake identities.

Tip A transaction that has not been approved yet.

Transaction A message that transfers funds or information between two nodes.
A transaction is solid if its entire history is known.

Acronyms

ASIC Application-Specific Integrated Circuit.

CA Cellular Automata.

DAG Directed Acyclic Graph.

DLT Distributed Ledger Technology.

IF IOTA Foundation.

IRI IOTA Reference Implementation.

PoW Proof-of-Work.

TSA Tip Selection Algorithm.

VDF Verifiable Delay Function.
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1 Introduction

IOTA’s vision aims to establish a real-time economy for Internet-of-Things and
the future Internet through a secure zero fee payment and data transmission
system. Realizing this vision is subject to a combination of features that cannot
be found in current distributed ledger technologies (DLTs): First, a significantly
higher throughput is required than in blockchains which have an intrinsic bottle-
neck, forcing transactions to be aggregated under a chain-type data structure;
second, fees can be considered a barrier for micro transactions, but they are
necessary in PoW-based DLTs where the network distinguishes between miners
and users. Conversely, IOTA utilizes a directed acyclic graph (DAG) structure
as explained in the original IOTA white paper [66] which permits a theoret-
ical infinite throughput1. Furthermore, enabling each network participant to
both issue and approve transactions allows IOTA to eliminate the fees found
in blockchain architecture, thus facilitating a micropayment-ready network (see
also [67]).

One common problem for early stage DLTs is that the networks are not
robust enough for proposed security mechanisms to function as intended, since
such security mechanisms presuppose a mature network. Therefore, it is typical
that DLTs employ various “bootstrapping” security measures at the outset,
ensuring network growth to the mature stage can take place2. Thus, in its
current implementation, IOTA relies on a centralized Coordinator to provide
security given the risk of dishonest actors seeking to undermine the nascent
network. IOTA’s definition of consensus requires a confirmed transaction to be
referenced (either directly or indirectly) by a signed transaction issued by the
Coordinator. In other words, the Coordinator can be thought of as a “finality
device”.

We believe that the vision of cryptocurrency networks based on Nakamoto
consensus can be improved upon by changing the key underlying assumption
about those controlling the majority of the network’s hashing power being con-
sidered “honest” by definition (the “longest chain wins” rule). In IOTA, the
requirement for honest actors to control a majority of the network’s hashing
power is currently replaced by the use of the Coordinator. The Coordinator is
a temporary measure as the IOTA network develops beyond Nakamoto’s vision
for network consensus. The Coordicide project is focused on the removal of
the Coordinator through the implementation of several network components,
as discussed in this working paper. Despite these additional components, all
existing fundamental design features of the Tangle remain in-place.

In line with the IOTA Foundation’s charter as a non-profit organization,
our goals as a research department include transparency, collaboration, and
community engagement. We aim to open our research work in order to obtain
feedback from academia as well as the broad community of enthusiasts. Since
we have released the IOTA white paper, we have indeed seen a flourishing

1The actual throughput is bounded by hardware limitations and by laws of physics.
2See e.g. https://en.bitcoin.it/wiki/Checkpoint_Lockin for an example of a security

mechanism of this sort
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Fig. 1: Interconnections between the Coordicide building blocks.

literature, would it be people analysing and proposing improvements on the
protocol itself [3, 14, 30, 47, 51, 74], building systems on top of the IOTA
protocol [15, 20, 59, 80] or studying the market viability [6, 28, 38, 72]. One
note of caution, however, is in order: Since our research is highly dynamic in
nature, proposed ideas need to be simulated and tested in order to develop
specific network components which we feel confident to deploy on the main
network. We stress that some of the ideas presented here are works in progress
and as such are not fully fleshed out. They are therefore likely to be modified
as we make progress and perform simulations.

At a high level, our vision for the Coordicide can be explained in the following
way. We are looking for a probabilistic consensus — with probability very close
to 1, all honest participants of the network would agree on which transactions
should be considered valid. It is important to remark that one should not
be afraid of the probabilistic nature of it — if something occurs with strictly
positive probability, this doesn’t yet mean it would ever occur in practice3.
Another important idea is that, while we do need total consensus on what is
really important (transactions’ validity), we may not need total consensus on
everything. Therefore, we may use an approximate consensus4 to achieve the
total one with high probability. It is also a feature of our approach that the
consensus (on transactions’ validity) is an attracting state in the following sense:
small deviations from the absolute consensus on secondary things (e.g., local
clocks, random number sequence that the nodes see, mana vectors) with high
probability do not lead to deviations from consensus on transactions’ validity.
Still, we keep the basic protocol simple: the only “hard” rule remains to be that

3As a quick example, try guessing at least one private key from Bitcoin addresses which
belong to Satoshi; yet, the probability that a random 256-bit number is one of those private
keys is strictly positive.

4For example, on time — it is something on which the approximate consensus already
exists; another example when the total consensus is not necessary is the common sequence of
random numbers: as explained below, it is already enough if most of the participants agree
on the same number frequently enough.
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a new transaction should approve two other transactions; what eventually stays
in the main tangle (not orphaned), is valid5. The above is in line with the idea
that “IOTA is free” [67]. This is because the actors will have flexibility to adapt
the system to different environments by only adjusting the node’s behaviors.

In order to get rid of the Coordinator, a number of challenges must be
solved. This working paper covers those challenges, which are summed up by
the building blocks in Fig. 1. In the following, we give a concise overview about
the current state of the Coordicide as well as future research directions:

• Node accountability. In Section 3 we propose the concept of global node IDs
and we describe a novel Sybil protection mechanism that does not require
node owners to risk or disclose their funds. Identifying the issuing node of
a message is fundamental to enforce a specific network topology (through
autopeering) or to penalize bad behaviours (through rate control).

• Autopeering and node discovery. An automated process to discover and
reliably connect to neighbors is needed in every distributed system. In
Section 4 we discuss an autopeering proposal for the IOTA network.

• Rate control. To ensure the network does not exceed its capacity, in Sec-
tion 5 we introduce a mechanism to control the rate of transactions that
are propagated through the network. This method selectively filters some
transactions out according to the statistics of the issuing node.

• Consensus and Voting. The previous building blocks lead to an extended
consensus framework described in Section 6. The new protocol does not
use the tip selection algorithm as a tool for consensus, although it is still
has its importance as it can be seen in Section 7. Instead, it proactively
resolves conflicts through voting. We describe two voting mechanisms
where nodes query other nodes to find out their current opinion on the
network status (Section 6).

• Tip Selection With the decoupling from the consensus mechanism, the
tip selection algorithm has more freedom to achieve a better performance
in its other tasks, as keeping the good structure of the network, demo-
tivating lazy behavior and quickly approve new honest transactions. In
Section 7 we talk about the impact and motivation of the tip selection, as
well as present more details on our main proposal for a new tip selection
algorithm.

5One of the reasons why we prefer using this approach, is the following: if we allow con-
flicting transactions on the Tangle, this has to go coupled with a precise conflict-resolution
rule, which can be never changed and likely has “long-range” dependencies.
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2 Status Quo

In the introduction, we mentioned that the current IOTA main network uses the
Coordinator to reach consensus and, more generally, to guarantee the security
of the network. However, this centralized component should only be considered
as a necessary bootstrapping mechanism, rather than a long-term solution. In
this section, we first discuss the current status of the IOTA main network imple-
mented through the IOTA reference implementation (IRI) software6, and then
we describe the challenges we are facing when building a Coo-less network (i.e.,
a network without the Coordinator). Since the Coordinator and its milestones
are currently deeply embedded in IRI, removing those dependencies not only
implies comprehensive changes to the software, but also leads to new research
questions.

2.1 Current IOTA implementation

The current IOTA main network is implemented according to the IRI software,
in which the Coordinator plays an important role. In the following we describe
the main tasks implemented in the current main network, not all of them strictly
related to consensus:

• Manual peering. In order to join the Tangle, a node is required to con-
nect to some existing nodes (peering). The current IRI software only
permits manual peering, i.e., a node operator has to manually look for
the addresses of other Tangle’s nodes. Peering is fundamental to propa-
gate transactions and to synchronize to the current status of the ledger.
As for the latter, milestones are useful anchors to determine whether two
nodes have fallen out of synchronization: If a node’s latest solid milestone
is much older than its peers’, it is probably lagging behind.

• Rate control mechanism. In order to issue a transaction, a node must solve
a cryptographic puzzle (Proof-of-Work). This is necessary to guarantee
that nodes do not arbitrarily spam the network, or to avoid that they
inject more transactions than the network can handle.

• Tip selection strategy. Approving transactions is a fundamental procedure
which leads to the DAG structure of the Tangle. To approve a transaction,
a node must verify that no inconsistencies with respect to the ledger state
are introduced. Although it is not possible to enforce which transaction
to validate, the original IOTA white paper suggests a tip selection algo-
rithm based on a random walk which: (i) Discourages lazy behavior and
encourages approving fresh tips; (ii) continuously merges small branches
into a single large branch, thus increasing confirmation rate; (iii) in case
of conflicts, kills off all but one of the conflicting branches.

6https://github.com/iotaledger/iri
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• Consensus. The main role of milestones is to determine the consensus.
The Tangle applies a simple rule: A transaction is confirmed if and only if
it is referenced by a milestone. In IRI, this is reflected in the getBalances
and getInclusionStates API calls, which indicate how many tokens an
account has and whether a transaction is confirmed, respectively.

• IRI code optimization. Instead of computing the full ledger state starting
from the genesis, an intermediate state is saved for each milestone; simi-
larly, milestones are used in local snapshots, i.e., the IRI pruning mecha-
nism, which allows nodes to avoid storing older parts of the Tangle.

2.2 New research challenges

The most significant modelling assumption in the IOTA white paper is the
honest transaction majority condition [14]: Specifically, to be considered valid,
the white paper consensus algorithm requires that the majority of transactions
always come from honest network participants. The implication is that honest
nodes may need to continuously send transactions, regardless of whether they
are actually using the network or not. Furthermore, achieving this hashing
majority must be expensive, otherwise it would be easy for malicious agents
to buy enough hashing power and overtake the network. In addition to this
incentivization problem, issuing transactions is subject to Proof-of-Work (PoW).
Due to its complexity, slow nodes would be excluded from participating in the
network.

The above concerns directly lead to new challenges and research questions
which will be investigated throughout the paper:

• Peering. We require an automatic way to connect to existing nodes. Such
an autopeering mechanism generates a network topology which becomes
fundamental to deal with eclipse attacks and acts as a main component
in certain voting protocols (see later Cellular consensus).

• Sybil protection. When node identities are introduced, it is necessary to
have a mechanism that prevents the creation of counterfeit identities to
gain disproportionate throughput or voting weight.

• Rate control. A more efficient rate control algorithm is needed to solve
the following tradeoff: If the PoW difficulty is too high, then small de-
vices (e.g., phones or sensors) would take an unreasonably long amount of
time to compute it, and will therefore be unable to send transactions; on
the other hand, low difficulty can favor network congestion and/or spam
attacks.

• Consensus. We need a consensus mechanism which is solid under the hon-
est node majority assumption (ensured by an appropriate Sybil protection
mechanism) without the support of the Coordinator.
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• Tip Selection. In the current proposal, the security of the system does not
rely solely on tip selection anymore. Therefore, there is now more freedom
in choosing the (recommended) tip selection algorithm. We require it to
be low in computational power, to make honest transactions approved
quickly and to demotivate lazy behavior, this all while keeping a good
structure for the Tangle.

In next section 3, we will introduce the notion of node identity which is a
prerequirement to the solution of the above research topics.

2.2.1 GoShimmer

These new concepts and the research results tied to this should be tested in an
experimental manner, in order to proceed to the next level of implementation in
a protocol. An important step, therefore, is to introduce a code-base on which
experiments can be be performed and the hypotheses thoroughly tested. This
is achieved by implementing the concepts of the Coordicide blueprint into a
prototype, called GoShimmer7.

GoShimmer is designed in a modular fashion, where each module repre-
sents one of the essential Coordicide’s components as well as core components
necessary to work as a full-node (e.g., gossip layer, ledger state, API). This
approach enables to convert the concepts piece-by-piece and more importantly,
simultaneous but independent of each other, into a prototype.

7https://github.com/iotaledger/goshimmer
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3 Node accountability

In a network without the Coordinator, several applications require to reliably
associate transactions or other messages with the node which issued them. These
applications include:

• Rate control. In an overload scenario, where the nodes are trying to is-
sue more transactions than the overall network can handle (due to its
physical limits), particular transactions originating from the most heavily
contributing nodes should be blocked or penalized.

• Voting-based consensus mechanisms. To prevent double voting and to
associate votes with node weights, the actual votes must be linked to
node IDs.

In Section 3.1, we suggest a way to associate global identities to nodes.
Since this may expose the network to potential Sybil attacks, in Section 3.2 we
introduce mana, a novel anti-Sybil mechanism.

3.1 Global node identities

In order to identify nodes, it is necessary to introduce global node identities. To
this end, we envision using common public key cryptography to sign certain data
and to link it to its issuing node in a tamper proof way. Additionally, we require
that the issuing node adds its public key to every signed message. This way,
every node can verify the authenticity of the issuing node without the need for
some form of global database of IDs and keys. It is important to note that these
mechanisms only need to be implemented to protect the communication layer
and that keys, IDs and signatures do not need to be stored in the Tangle once
processed by the node. This allows for greater flexibility as the actual signing
scheme can be exchanged without any impact on stored data. In contrast to
any data stored in the Tangle, the communication layer, therefore, does not
necessarily require the use of post-quantum cryptography right now, but it can
be swapped when quantum attacks become more imminent in the future.

When node identities are relevant, a distributed system becomes vulnerable
to Sybil attacks [32], where a malicious entity masquerades as multiple coun-
terfeit identities. This would overcome any mechanism that relies on a limited
number of such identities and would open the network to coordinated attacks.
A possible way to deal with this problem is described in the following section.

3.2 Sybil protection principles

One very common way to make such a Sybil attack harder is the so-called
resource testing, where each identity has to prove the ownership of certain
difficult-to-obtain resources. Since in the cryptocurrency world users own a
certain amount of tokens, we propose a Sybil protection mechanism based on
the ownership of such tokens. Specifically, we allow a user to assign a certain
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reputation value to a given node alongside its issued transaction. Such a rep-
utation value, called mana, is equivalent to the total funds transferred within
the transaction.

As anticipated, mana is a crucial aspect in rate control, autopeering and
voting. In the future, we expect mana to be only a specific aspect of a more
comprehensive reputation system which includes other criteria, such as penalties
for misbehavior or incentives for helping the network. Also, criteria which are
external to the system (informally, any sort of “real-world importance”) may
be used.

Specifically, mana is a function whose input is a transaction, and whose
output is the mana state, a vector which gives the amount of mana staked to
each node. There are several ways of defining a mana system, and through the
last months of research we decided on one of such systems that have all the
desirable properties the network wants.

We stress here that this process does not influence the actual balances in
any way, but it is only used to give higher weight to “trusted” nodes.

In the next subsection we present a base for our system of choice, and fol-
lowing we properly define the model the network will use, as well as describe
why this alteration of the base model is more desired.

3.3 The mana system

The principles of a mana system is that one should get or have more mana
the more one contributes to the network. Contribution is naturally associated
to how much stake one holds, but although having tokens helps the network,
one should not be able to “mine” an unrestrained amount of mana by simply
holding some quantity of tokens for a large amount of time, or by frequently
sending tokens around.

Now we will define a mana system that has the described properties, and
conclude the subsection with a possible improvement that would keep abrupt
variations in mana from happening.

To achieve this we introduce three new concepts:

• Pending mana. Addresses generate pending mana at a rate proportional
to the stake they hold.

• Mana. When funds (i.e., IOTA tokens) are spent from an address, the
pending mana that has been generated by this address, is converted to
mana and pledged to a node8. Pending mana is now generated by the
funds on the receiver’s address.

• Decay. Both mana and pending mana decay at a rate proportional to its
value, hence keeping mana from growing unrestrained over time.

8In practice, it may be also be a good idea to only credit mana to the node after a (small)
amount of time ε0, as a further protective measure against actors who might try moving funds
very fast in order to possibly mess with the system by using network delays.
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Let us now formalize these ideas and define the following quantities:

• The amount of tokens an address x holds at a given time, S;

• The generation rate for pending mana, α;

• The decay rate coefficient for mana and pending mana, γ;

• The pending mana an address x holds at time t, mx(t);

• The mana a node Z has at time t, MZ(t).

Consistently with the above informal explanation, the evolution of the pend-
ing mana on an address (while the tokens are not moved) satisfies the differential
equation

d

dt
mx(t) = αS − γmx(t). (1)

Hence, if an address has S tokens at time 0, its pending mana can be calculated
by solving (1) to obtain that

mx(t) = mx(0)e−γt +
αS

γ
(1− e−γt). (2)

Note that the number of tokens on an address is a piecewise constant function;
so, the above equation can be used to calculate the pending mana in the general
case, by considering the intervals where the address’ balance remains constant.
In particular, in the case where the address had no tokens before the initial time
(it received S tokens at time 0), (2) reduces to

mx(t) =
αS

γ
(1− e−γt). (3)

Observe that even though we stated that pending mana decays over time, we
can see that (3) is strictly increasing. This happens due to the decay being
proportional to its value, while the generation being a constant rate (equal to
the number of tokens). This means that the decay rate is always lower than the
generation rate and thus the pending mana is always increasing, but slower and
slower as time increases, up to a point where we cannot see its growth anymore.

After being pledged to a node, mana decays over time. Hence the evolution
of mana (without further pledging from addresses) for a node satisfies

d

dt
MZ(t) = −γMZ(t),

and therefore
MZ(t) = MZ(0)e−γt. (4)

Observe that from (2), (3) and (4) the node can always calculate the mana and
pending mana of all nodes in the system, given that it knows the values of α
and γ (which are public).

This model has two desired properties:

13



1. Mana cannot be gamed, in the sense that the amount of mana received
will not change depending on how often the user converts pending mana
into mana or in how many addresses the tokens are split. To illustrate
this let us give two examples.

First consider that an address has S tokens and will pledge the mana
generated to node Z at two points in time: at time t/2 and at time t (of
course considering the user doing this also has control over the receiving
address). We will show that pledging more often will give the same mana.
Let us denote the mana received at the first pledging by m1 and at the
second pledging by m2. The values of m1 and m2 are the same (as we
have the same number of tokens generating pending mana over the same
amount of time) and can be calculated by (3):

m1 = m2 =
αS

γ
(1− e−γt/2).

However, at time t, when Z receives the mana m2, the mana m1 will have
decayed for time t/2, hence using (4) we have that the mana that Z has
at time t is

MZ(t) = m1e
−γt/2 +m2

=
αS

γ
(1− e−γt/2)(1 + e−γt/2)

=
αS

γ
(1− e−γt),

which is the same it would have received by pledging only once.

The second example is much simpler. If instead of having an address
with S tokens we have n addresses with S/n tokens, all pledging to Z at
time t, then by (3) the total mana received is

MZ(t) = n× α(S/n)

γ
(1− e−γt)

=
αS

γ
(1− e−γt),

which again is the same value.

2. Mana is bounded, both for a node with addresses summing S tokens
and, therefore, also for the entire network. To check this, observe that
by (4), as the pending mana becomes mana, its value at the node only
decays. Hence the maximal value of mana is the same as the maximal
value that (3) achieves, which is the asymptotic value as t→∞:

lim
t→∞

mx(t) = lim
t→∞

αS

γ
(1− e−γt/2)

=
αS

γ
.
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Since this bound is a constant times the number of tokens, if we sum the
maximal mana on all the possible addresses on the network, we get that
at any time the maximal mana in the network can be bounded above in
the following way

Total amount of Mana ≤ α

γ
× Total amount of IOTA tokens. (5)

This approach has some interesting features:

• Once an address gains control over the tokens, they must wait for their
pending mana to gain their full potential.

• Mana is easy to store and is snapshotable: its decay and growth can be
deduced from changes in time and balance: if a nodes’ pending mana and
balance at t1 is known, then its potential mana at time t2 can be deduced
for any t2 > t1.

This proposal of mana satisfies most of our needs but it still could be crit-
icized for its abrupt variations over time: since we could have a large quantity
of pending mana becoming mana for a node at once, many applications that
depend on how much mana a node currently has could abruptly change their
vision. To prevent this from happening, we will use an averaged version of mana
M̄Z(t) that is defined for a certain parameter ∆ as

M̄Z(t) =
1

∆

t∫
t−∆

MZ(s)ds. (6)

In mathematical terms, the mana system M̄Z is a smoothing of the mana
system MZ , obtained by applying moving averages to their value over time.

There are two things to notice about M̄Z :

• The system M̄Z is as simple as MZ , in the sense that if we have the values
of MZ , the calculation of M̄Z can be done without significant computa-
tional cost.

• Differently from MZ(t), the function M̄Z(t) is continuous. This means
that after the pledge of mana from an address, the value of M̄Z(t) will
slowly increase until it achieves its maximum value. The speed of this
increase will depend on the parameter ∆.

3.4 Comparison with existing schemes

The amount of mana people can delegate is determined by how many tokens
they own, which means that people who own more tokens will have a larger
influence in this process. In particular, nodes could accumulate large amounts
of mana without having much stake in the network of their own. In a traditional
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proof-of-ownership Sybil protection mechanism, each node has to prove that it
owns a certain amount of collateral. Conversely, delegating mana brings several
key advantages. First, since mana is credited as part of regular transactions,
nodes do not have to constantly use their address’s private keys to sign, which
would pose a severe security risk. Furthermore, this approach does not require
all node operators to own or declare high amounts of tokens; finally, users can
issue additional mana to nodes providing good service to the community.

Since we have now established reliable node identities, we can use these
identities to discover and connect to other nodes in the network while taking
their mana into account.
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4 Autopeering

In the IOTA protocol, a node (or peer) is a machine storing the information
about the Tangle, IOTA’s underlying data structure. In order for the network
to work efficiently and for the nodes to be kept up-to-date about the ledger
state, nodes exchange information, such as new transactions, with each other.
Each node establishes a communication channel with a small subset of nodes
(i.e., neighbors) via a process called peering. The peering process is potentially
vulnerable to various attacks. For instance, if all of a node’s neighbors are
controlled by an attacker, then the attacker has complete control over the node’s
view of the Tangle, leaving the victim node vulnerable to a host of scams. This
type of attack is known as an Eclipse attack [43, 46, 49].

Currently, in the mainnet IOTA network, nodes use a manual peering pro-
cess to mutually register as neighbors. However, manual peering might be sus-
ceptible to these attacks (including social engineering ones) and can be also
generally inconvenient. To this end, and to simplify the setup process of new
nodes, we introduce a mechanism that allows nodes to choose their neighbors
automatically. The process of nodes choosing their neighbors without manual
intervention by the node operator is called autopeering.

Specifically, in this section we propose an autopeering mechanism which
achieves two important goals: First, it creates an infrastructure where new
nodes can easily join the network; second, we make sure that an attacker cannot
target specific nodes during the peering process, i.e., we ensure the network to
be secure against Eclipse attacks.

For more technical details, we refer the interested reader to the source code
of our autopeering simulator9 as well as its integration on GoShimmer10.

4.1 Peer discovery

In order to establish connections, a node needs to discover and maintain a list
of the reachable IP addresses of other peers (peer discovery). Then, the node
has to select to which peers it establishes connections as well as how to handle
incoming connections (neighbor selection).

To bootstrap the peer discovery, a node must be able to reach one or more
entry nodes. Thus, the protocol provides a hard coded list of trusted “entry
nodes” run by the IF or by trusted community members that answer to peer-
discovery requests from new nodes. This approach is a common practice of many
distributed networks [61]. Moreover, Public Key-based Cryptography (PKC)
should be used for mutual authentication in order to avoid “malicious nodes”
from hijacking the bootstrap phase. One way to implement such authentication
is to use a ping-pong protocol: a peer X sends a ping message, containing its
public key, signed with its private key to a peer Y , which in turn, replies with
a signed pong containing Y ’s public key. Both peers authenticate to each other
by verifying that the respective signatures are valid and add the other peer to

9https://github.com/iotaledger/autopeering-sim
10https://github.com/iotaledger/goshimmer

17

https://github.com/iotaledger/autopeering-sim
https://github.com/iotaledger/goshimmer


the verified peer-list (i.e., the list of authenticated peers). In the case of entry-
nodes, a peer must know in advance their public keys, to verify the signed pong
messages.

In a distributed environment, the list of reachable peers changes over time
since nodes can continuously join or leave the network. To keep this list up-to-
date, we assume that nodes periodically communicate a subset of their known
peers to others. Each node, upon reception of a list of known peers from other
nodes, adds this information to its unverified peer-list (i.e., the list of known
peers to be authenticated). Once the unverified peer-list of a peer is non-empty,
a peer X sends a signed discovery-request message to some peer Y , which be-
longs to its unverified peer-list. Peer Y replies with a signed discovery-response
message containing a subset of its known peers. Upon reception and verifica-
tion of the discovery-response message, peer X adds the received peers to its
unverified peer-list and starts the authentication ping-pong protocol with them.
This mechanism is simple and effective as it allows every node to learn about
other network participants.

It is important to note that this mechanism only requires to have access
to a large enough fraction of the network such that the verified peer-list (i.e.,
potential neighbors) contains “enough” nodes11.

4.2 Neighbor selection

The goal of the neighbor selection is to prevent attackers from “tricking” other
nodes into becoming neighbors. Neighbors are established when one node sends
a peering-request message to another node, which in turn accepts or rejects
the request with a peering-response message. To prevent attacks, we attempt
to make the peering-request verifiably random. If the requests are random,
attackers cannot create nodes to which the target node will send requests. Fur-
thermore, a node must check that the incoming requests are indeed random, in
order for it to screen out attacking requests.

Nodes choose half of their neighbors themselves and let the other half be
comprised of neighbors that choose them. The two distinct groups of neighbors
are consequently called:

• Chosen neighbors. The peers that the node proactively chooses from its
list of neighbors.

• Accepted neighbors. The peers that choose the node as their neighbor.

In order to select chosen neighbors from the list of potential peering partners,
we measure the distance between two nodes through the distance function d,
defined by

d(nodeId1, nodeId2, ζ) = hash(nodeId1)⊕ hash(nodeId2 + ζ),

11The required number of potential peers needed in the list depends on the gossip protocol
as well as global system parameters such as the number of neighbors.
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where ζ is a public salt12 (we discuss how salts are chosen in Subsection 4.4).
In order to connect to new neighbors, each node with ID ownId and public

salt ζ keeps a list of potential peers that is sorted by their distance d(ownId, ·, ζ).
Then, the node sends them peering requests in ascending order, containing its
own node ID, its current public salt and its address (i.e., IP + port). After
that, the requested node can decide to either accept or reject the connection as
explained below. The connecting node repeats this process until it has estab-
lished connections to enough neighbors or it finds closer peers. Those neighbors
make up its list of chosen neighbors. This entire process is also illustrated in
Algorithm 1.

Algorithm 1: Select chosen neighbors

Input: desired amount of neighbors k, current list of chosen neighbors C,
list of potential peers P

Psorted ← sortByDistanceAsc(P, ownId, ζ)

foreach p ∈ Psorted do
peerRequest← sendPeerRequest(p)

if peerRequest.accepted then
append(C, p)

if |C| ≥ k/2 then
return

Similarly to the previous case, in order to accept neighbors, every node with
ID ownId must generate a private salt ζ∗. When it receives a peering request
from a node with ID remoteId, it measures d(ownId, remoteId, ζ∗) and only
accepts the request if at least one of the following conditions is satisfied:

• The connecting node is closer than an existing accepted neighbor.

• The node receiving the peer request does not have enough neighbors.

In addition, the receiving node can (and should) apply a statistical test to
the request, and only accept the request if

d(remoteID, ownId, ζremote) < θ

for a fixed threshold θ. This test determines if the request was indeed random.

4.3 Network reorganization and eclipse protection

Although we have not yet discussed how salts are selected, we assume in this sec-
tion that public salts are unpredictable and verifiably random - that is, everyone
can check that they are random.

12Salts defend against dictionary attacks or against their hashed equivalent, the pre-
computed rainbow table attack.
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The public and the private salts help to create an asymmetric perception
of the network, which is supposed to discourage an attacker from harming the
system. Through this, the only way to target a node in the autopeering process
is by brute forcing different node identities and hoping to get closer (in terms
of distance d) than an existing neighbor.

The effectiveness of this brute force method is determined by a statistical
test and a threshold θ. The smaller the value of θ, the more nodes an attacker
requires to have a reasonable chance of being successful. For example if we set
θ = .01, an attacker only has 1% of creating a connection with a desired peer.
In a similar way, the statistical test allows other nodes to judge the quality of a
connection. More specifically, if the distance is small enough, the connection is
assumed to be good.

Furthermore, to prevent attacks nodes will change their salts periodically.
This frequent reorganization brings a twofold benefit: First, it prevents attack-
ers from affecting the network topology; second, it supports new nodes that
want to join the network as their peering requests will be accepted with larger
probability.

4.4 Choosing salts

In this subsection we discuss how to choose salts. Contrary to private salts,
which can be any randomly generated number, the public salts have to be
verifiably random. That is, nodes must be able to verify the public salts used
in requests. If an adversary could choose them completely at will, then salts
would be mineable, in a manner where the adversary can achieve a minimum
distance for any given distance function.

The simplest way to set public salts would be to use a centralized random
number beacon (such as the beacon operated by NIST [53]). Indeed, a node
could set its public salt to be its ID hashed with every 1000th random number
issued by the beacon. However, such a centralized option is unpalatable in a
DLT space.

Another similar option is using the same distributed random generator used
in the Fast Probabilistic Consensus (FPC) protocol (see Section 6.1). However,
there are some issues that would need to be resolved: nodes would receive the
random number through gossip, but new nodes would not be able to participate
in the gossip without any neighbors.

Another option is to use hash chains [56]. When a new node joins the
network, it creates a hash chain, ζ = {ζ0, ζ1, ζ2, . . . , ζm}, where ζi+1 = hash(ζi)
. Then, when nodes share their ID in the peer discovery, they also reveal the
number ζm. The salt would then be some value element of the hash chain ζi
with i decreasing on the time. Thus, accepting nodes can verify that the salt
is correct, without compromising the unpredictability of the salts. These hash
chains do leave the attacker some amount of freedom, since a desirable hash
chain can be mined. However, since this would require advanced planning, and
at most one ζi could be mined in the chain, a desired distance to a certain node
can only be created for a short period of time.
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4.5 Sybil protection

By creating large amounts of nodes for free, an attacker may gain influence on
the network topology and might be able to perform eclipse attacks. In order
to effectively prevent this kind of attacks, we introduce a Sybil protection. As
discussed in Section 3.2, the Sybil protection in the IOTA protocol is given by
mana.

We outline the main idea how mana can be implemented into our autopeer-
ing mechanism. The simplest way is to require nodes to have a minimal amount
of mana to participate in the autopeering. This is problematic for two reasons.
First, we want as many nodes to participate as possible, and setting a mana
requirement could hurt participation. Second, attacking nodes will be encour-
aged to split up their nodes into several smaller attacking identities. Moreover,
any hard threshold criterion13 may lead to poor connectivity properties of the
autopeering network. For these reasons, our preferred option is to weight the
distance function by mana.14 This would make low mana nodes less favorable
but still allow them to participate. Moreover, nodes with similar mana are likely
to be paired with each other. Thus, to eclipse a high mana node, an attacker
would also need many high mana nodes.

13For instance, we could pick a parameter a > 1, and a node with M mana would only peer
with nodes whose mana is in the interval [M/a,Ma].

14For example, we can modify the distance between nodes X and Y defined at the beginning
of this section to

d(X,Y, ζ) = f(|kX − kY |) [hash(nodeIdX)⊕ hash(nodeIdY + ζ)] ,

where ki is the rank (i.e. the position in the ordered list of nodes) of the node i according to
mana, and f(s) is some increasing function, such as eαs or s3.
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5 Rate control

A basic goal of every communication network is to handle the traffic injected by
its nodes by limiting the rate of transactions joining the network. In fact, such
a traffic could lead to unpleasant situations such as network congestion, due to
resource limitations, or spam, due to malicious actors:

• Congestion control. In most networks, there are circumstances where the
incoming traffic load is larger than what the network can handle. If noth-
ing is done to restrict the influx of traffic, bottlenecks can slow down the
entire network. A similar analysis can be applied to distributed ledgers,
where the incoming traffic (i.e., transactions issued by the nodes of the net-
work) exploits limited resources such as bandwidth, computational power,
or disk space. Additionally, nodes can lose synchronization with each
other, sometimes without being aware of it.

• Spam detection. Gossip protocols (which are currently implemented to
forward transactions in the IOTA network) are an efficient and reliable way
to disseminate information. These protocols have nevertheless a drawback:
They are unable to limit the dissemination of spam messages. Indeed,
messages are redundantly distributed in the network and it is enough that
a small subset of nodes forward spam messages to have them received by
a majority of nodes.

Rate limitation strategies for communication networks are well studied in
the case of both congestion control [52] and spam detection [33]. The former
has been deeply investigated after the Internet collapse in the 80’s, and solu-
tions based on Additive Increase Multiplicative Decrease have been proposed to
properly modulate the influx of packets in the network [25, 21, 50]. We plan to
adopt a similar strategy to deal with potential congestion in the Tangle. On the
other hand, the seminal work by Dwork and Naor [33] in 1993 paved the way
to research in spam prevention. In the context of DLTs, many blockchains use
PoW as a built-in rate limitation mechanism. However, PoW leads to undesir-
able side effects such as mining races: The discrepancy between smaller general
purpose devices and optimized hardware with respect to the PoW performance
is several orders of magnitude. Hence, any rate control based on PoW would
eventually leave smaller devices behind. A new transaction rate control mech-
anism for the Tangle is therefore required to deal with the global and per-node
limitations of the network. In the rest of the section, we will investigate two
anti spam mechanisms based on varying difficulty PoW (Section 5.1) and on
non-parallelizable functions (Section 5.2).

5.1 Adaptive PoW

In a pure PoW-based architecture, a high difficulty value would prevent low-
power nodes from issuing transactions, which is not desirable, especially in the
context of Internet-of-Things; on the other hand, low difficulty can quickly lead
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to network congestion. We propose an adaptive PoW algorithm to allow every
node to issue transactions while penalizing spamming actions.

5.1.1 Algorithm

All nodes in the network have knowledge of three global parameters:

• Base difficulty d0. It sets the minimum difficulty of PoW.

• Adaptation rate γi ∈ [0, 1]. It provides the rate at which the PoW difficulty
will be adjusted, which depends on the mana mi owned by node i.

• Time window W > 0. This parameter defines the granularity of the
algorithm, and its role will be clarified below.

Similarly to the current implementation, issuing a new transaction must be
preceded by the computation of some PoW. At time t, node i must perform a
PoW with difficulty di(t) which can be calculated by

di(t) = d0 + bγi · ai(t)c , (7)

where ai(t) represents the number of transactions issued by node i in the time
interval [t−W, t]. Note that when γi = 0, the algorithm becomes equivalent to
the current IOTA implementation.

Again, received transactions are processed in FIFO order. Let us assume we
receive a transaction with difficulty di signed by node i. To decide whether this
transaction should be forwarded or not, a node counts how many transactions
ri(t) signed by i has been received in the last W seconds. In accordance to
the formula given by Eq. (7), the node forwards the transaction if the following
condition is satisfied:

di ≥ d0 + bγi · ri(t)c .

Due to the asynchronous nature of the system, some of the transactions
may be received in burst, invalidating the previous formula. We consider a
correcting term c > 0 which allows to accept transactions with lower difficulty.
This parameter is known by all nodes. We modify the previous formula into:

di ≥ max{d0; d0 + bγi · ri(t)− cc}.

For the sake of simplicity, we assume incoming transactions are checked in
the same order as they are issued by the sending node. As the expected time
needed to perform the PoW is typically much larger than the network latency
h, this is a reasonable assumption.

Assume that a transaction is seen for the first time at time t0. Every node
will store the id of the node issuing the transaction, the PoW difficulty computed
and the time t0. The identity id of the issuing node as well as its manamid can be
determined using the methods described in Section 3. Based on this information,
it can then be checked that the difficulty of the most recent transaction is indeed
sufficient. This idea is more formally described in Algorithm 2.
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Algorithm 2: Rate control algorithm

Input: incoming transaction tx, set of known transactions X , time
window W , basic difficulty d0, adaptation rate γi.

Output: forward or ignore tx.

t0 ← time(tx);
id ← nodeId(tx);
T ← tx′ ∈ X | time(tx′) ∈ (t0 −W, t0] ∧ nodeId(tx’) = id;

if difficulty(tx) ≥ d0 + γi · |T | then
return forward tx;

return discard tx;

5.1.2 Theoretical analysis

In the IOTA protocol implementation the number of operations triples for each
increment of the difficulty. Let b be the mean number of operations needed to
solve the PoW at difficulty 1. Furthermore, following the definition of gamma,
1/γ is the maximum number of transactions that can be sent at a given diffi-
culty during a time window W (note that we omit the index i as we perform
the analysis on a single node). Hence, the number of operations that can be
computed by a node during a time window, i.e., µ ·W , produces a bound on the
node’s throughput:

µ ·W ≥ b · 3d0
γ

+
b · 3d0+1

γ
+ . . .+

b · 3d0+n

γ

=
b

γ
·
n∑
i=0

3d0+i

=
b

γ
· 3d0+n − 1

3d0 − 1
,

which, after elementary computations, gives

n ≤ log3

(
γ ·W · (3d0 − 1)

b
· µ+ 1

)
− d0

≈ log3

(
γ ·W
b
· µ
)
. (8)

Furthermore, consider that the throughput is equal to the total number of trans-
actions issued by a node, i.e., n−d0γ , over a time window W . Hence, the through-
put for a node with computational capability µ is

θ(µ) =
n− d0

γ ·W

≤
log3

(
γ·W
b · µ

)
− d0

γ ·W
.
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5.1.3 Simulations

We built a Python simulator with Jupyter notebook15 in order to verify whether
the adaptive PoW algorithm can mitigate the problems described in the begin-
ning of this section. In the simulations, we considered a simple scenario with a
single node to evaluate the maximum throughput it can generate.

Suppose a node has computational capability µ measured in number of op-
erations per second. We assume a node can belong to one of the following three
categories depending on its computational power:

• IoT, where µ = 10−1 × 106;

• Laptop, where µ = 100 × 106;

• FPGA, where µ = 106 × 106.

Furthermore, we assume that the number of operations needed to solve PoW
at difficulty 14 is a random variable uniformly distributed with mean 314 ≈ 5×
106. Hence, an IoT device will be able to solve it with an average time of 1
minute.

Finally, we set the following global parameters:

• Base difficulty d0 = 10;

• Adaptation rate γ = 0.1, which means the node increases the PoW diffi-
culty every 10 transactions sent within the time window;

• Time window W = 1000 s.

In the following subsection, we present the simulation results when a node
wants to issue 5000 transactions in the shortest possible time, i.e., we aim to
maximize the total throughput.

In this subsection, we present the simulations results based on the current
fixed PoW algorithm, i.e., when γ = 0. In Fig. 2a, we show the time (in seconds)
needed to compute the PoW for IoT, laptop and FPGA. The red line shows the
average time needed to compute the PoW. As we expect, IoT devices require
on average 1 minute for a PoW difficulty of 14. Laptops improve this time to
about 6 seconds, while FPGAs run 6 orders of magnitude faster than laptops
(i.e., they solve the PoW in a few microseconds).

According to these numbers, in Fig. 2b we show the throughput generated by
the nodes, computed as the number of transactions per second. In the current
IOTA implementation, the usage of FPGAs can speed up the computation by
several orders of magnitude, preventing low-power nodes to access the network
successfully and enabling spam attacks.

In this section, we analyze the adaptive PoW algorithm. In Fig. 3a we
show how the PoW difficulty changes over time. In particular, we see an initial
transient phase where the difficulty progressively increases. Then, the difficulty

15https://github.com/iotaledger/adaptive-pow-sim
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(a) Time (in seconds) needed to compute fixed PoW (difficulty = 14). The red line
shows the average PoW time.

(b) Throughput (in transactions per second) with fixed PoW (difficulty = 14).

Fig. 2: Fixed PoW

oscillates around a certain value, which depends on the computational capa-
bilities of the device: for instance, IoT devices are able to solve a PoW with
difficulty 14, while FPGAs can solve up to a difficulty of 27.

Such a different difficulty mitigates the gap between the solution time for the
PoW between the different devices: while IoT can solve the puzzle faster than in
the fixed scenario, high power devices see their PoW time raising considerably.
This is the key principle behind the adaptive PoW algorithm: make life easy to
IoT devices (which is one of the most important IOTA use cases), while bound
the power of FPGAs and ASICs (Fig. 3b).

In fact, it is interesting to see that specialized hardware cannot spam the net-
work indefinitely or create congestion, because its allowed throughput is capped
in the same order of magnitude of low-power devices. Fig. 3c shows this funda-
mental result, which proves the validity of the proposed approach.

5.2 Verifiable delay functions

While the adaptive PoW algorithm described in Section 5.1 mitigates some of
the drawbacks of PoW, we believe that, in the current era of distributed ledger
ecosystems, the need for more efficient algorithms is evident. In the following,
we present a more sustainable mechanism that might be used as a complete
replacement of the PoW component based on verifiable delay functions (VDFs).
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(a) PoW difficulty variation over time.

(b) Time (in seconds) needed to compute adaptive PoW. The red line shows the
average PoW time.

(c) Throughput (in transactions per second) with adaptive PoW.

Fig. 3: Adaptive PoW
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5.2.1 Preliminaries

Informally, the VDFs are special functions that are (i) difficult to evaluate,
even under the assumption of using unbounded parallelism (i.e., using an infinite
number of CPUs) [12] but (ii) easy to verify. Compared to PoW, these functions
bring the following advantages:

• VDFs can be considered more environment friendly since they avoid min-
ing races.

• As they are not parallelizable, they make the usage of dedicated hard-
ware inefficient (e.g., ASIC), inherently solving the problem of unfairness
between slow and fast nodes.

The first ideas about verifiable delay functions can be traced back to the
seminal paper of Dwork and Naor in the field of spam protection [33], but
it is only after the recent paper by Boneh et al. [10] that the interest in the
development and implementation of VDFs has substantially increased. Various
researchers have proposed different VDFs based on specific number-theoretic
functions (e.g., modular exponentiation [33, 64], supersingular isogenies over
elliptic curves [29], pairings over elliptic curves, injective rational maps between
extensions of finite fields [10]). In fact, VDFs are already an essential ingredient
in some DLT designs (e.g., Chia Network16). Furthermore, [10] has shown a
potential application for decentralized randomness.

It is worth reiterating that spam detection is a field where VDFs has already
been applied by the Dwork-Naor algorithm, which uses the square root over
finite fields puzzle. The main reason why their work has been considered as
impractical is the fact that one has to use rather large finite fields to make the
algorithm useful. At the time of the suggestion of the algorithm, early 1990s,
the existing libraries for handling multiple-precision arithmetic were orders of
magnitude slower than the current ones.

5.2.2 Protocol

In this section, we present a novel anti-spam mechanism for IOTA based on
Wesolowski VDF [78] which aims to overcome the limitations of PoW (we choose
the Wesolowski construction because it guarantees fast verification time and low
overhead). The research on VDF is actively ongoing and this algorithm can be
considered as a future replacement for adaptive PoW.

As an initial setup for the protocol, the network participants are required
to agree on (i) a public parameter N , which will serve as the modulus for the
VDF, and on (ii) a cryptographic hashing function H, which will be used in the
computation of the proof. As for (i), the parameter N = p·q is an RSA modulus
computed as the product of two prime numbers of the same order, i.e., having
the same bit-length. The security of the entire mechanism relies on the length of
N : the longer the modulus is, the more difficult it is to find its factorization. A

16www.chia.net
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fundamental question is how to generate the RSA modulus without disclosing
its factorization to any of the network participants or relying on any sort of
centralization. The literature on distributed RSA keys generation already counts
several existing solutions [11, 27, 45, 40]. We describe our proposal in [4] where
our algorithm exploits smooth numbers to generate fast prime numbers [31] and,
hence, to reduce the overall communication complexity. As for (ii), for a given
binary message m ∈ {0, 1}∗, we define a hashing function H with security level
k (i.e., breaking the hashing function’s security would take approximately 2k

computations) such that H(m) : {0, 1}∗ 7→ [0, 2k]. Having this in mind, we also
define Hprime(m) as the smallest prime greater or equal to H(m) for a given
message m:

Hprime(m) = min{x ∈ N | x ≥ H(m) ∧ x prime}.

Each time a node tries to issue a transaction, it has to compute the VDF
solution y, which can be solved only using τ sequential squarings, such that

y = x2τmod N, (9)

where x = H(m). The evaluation takes as inputs the message hash x and a
difficulty τ ∈ N, computed depending on mana. Furthermore, we enforce that
a node must choose m as the VDF output of its previous transaction. In this
way, the protocol ensures the sequentiality of the VDF evaluations because a
node has to wait for a VDF to complete before starting a new computation. In
other terms, VDFs cannot be run in parallel in order to overcome node’s allowed
throughput.

Algorithm 3: Evaluation and proof of the VDF

input : m ∈ {0, 1}∗, τ ∈ N
output: π ∈ [0, N − 1], l prime ∈ [0, 22k − 1]
x← H(m)
y ← h
for k ← 1 to τ do

y ← y2

end
l← Hprime(x+ y)
π = xb2

τ/lc

return (π, l)

Unlike PoW, in VDF there is no trivial way to verify whether a node has
indeed performed the work to obtain the output y. For this reason, we propose
to attach an additional number, the proof, to help other nodes during the veri-
fication. In order to generate the proof, the node computes l = Hprime(x + y)
and π = xb2

τ/lc. The summation between x and y ensures that the challenge
has been successfully solved. In order to keep the transaction size small, the
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Algorithm 4: Verification of the VDF

input : x, τ, π, l
output: > or ⊥
x← H(m)
r ← 2τ mod l
y ← πl · xr
if l = Hprime(x+ y) then

return >
else

return ⊥
end

evaluator will only attach the resulting proof, i.e., the pair {l, π}, since the so-
lution y can be inferred from it. The Algorithm 3 describes the evaluation and
proof processed by a node.

A node receiving a new transaction has to reconstruct the solution y to verify
whether the VDF has been properly evaluated. To do it, the node will compute
y = πl · xr, where r = 2τ mod l. The challenge y is then correct if l′ = l, where
l′ = H(x+ y). We describe the verification task in Algorithm 4.
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6 Consensus and Voting

Due to the propagation delay of transactions in the network, not all nodes share
the same vision of the Tangle at the same time. This might lead to situations
where the validation process lets multiple transactions in conflict with each
other join the Tangle. It is a fundamental assumption of the IOTA white paper
that the Tangle itself can indeed contain conflicting transactions. In case of
a conflict, however, the nodes need to decide which transaction(s) should be
considered valid, i.e., they need to come to a consensus on those conflicting
transactions.

In the original IOTA white paper this is solely achieved by consistently ap-
plying the tip selection algorithm (TSA), i.e., the mechanism used by (honest)
nodes to select the transactions to approve, which currently uses a biased ran-
dom walk. In case of a conflict, this bias will eventually leave all but one of the
conflicting branches behind. However, this approach is not suited for our cur-
rent vision of the Tangle, as conflict resolution is slow and it leads transactions
that chose the “wrong” branch to be orphaned, creating the need for a large
number of reattachments.

In this section we discuss a consensus mechanism which we call Shimmer
and that is a mechanism to achieve consensus that is robust against potential
attacks. The Shimmer voting scheme is named after an extraordinary behavior
seen in nature. Bees “synchronize” their movement to defend themselves against
predators. They do this without any centralized entity, and only know when
to “change their state” by observing the behavior of their peers. Individual
autonomous agents that act according to some predefined rules can be found
in many systems in nature, such as bees, ants, schools of fish and even in some
areas of physics. Very simple rules can create incredibly complex features that,
over time, manifest as emergent properties of a system. The Shimmer consensus
mechanism works in the same way. Instead of trying to reconstruct the opinion
of every other node, we care only about the opinions of a very small subset of
nodes and let consensus be formed organically as an emergent property of the
network.

More specifically the idea is that nodes query other nodes about their current
opinion of the ledger, and adjust their own opinion over the course of several
rounds based on the proportion of other opinions they have observed. Whilst
the voting models have their limitations, they have been successfully applied in
a wide range of engineering and economical applications [5, 62, 70], leading to
the emerging science of sociophysics [18]. We describe two voting mechanisms
where nodes communicate to each other to decide, in case of a conflict, which
transaction(s) should be accepted in the Tangle.

For this section, we only consider algorithms that find consensus on the value
of a single bit, i.e., of a single conflict. The result of this consensus process can
then be used to mark a transaction as either “liked” or “disliked”.

So, the general idea is to let the nodes talk to each other in order to resolve
the conflicts pro-actively. The conflict resolution is performed starting from an
initial opinion on the ledger status described as follows: Consider a transaction
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Fig. 4: Votes must be monotonous

v. If in a given interval a node does not see any other transaction spent from
the same address, we say that the node likes transaction v; otherwise, the node
dislikes v17. The decision whether a transaction is liked or disliked must then
be taken into account for the tip selection. The most straightforward way of
integrating this is to simply remove all the tips in the future cones of disliked
transactions from the tip selection.

After that, we periodically apply a voting scheme to every transaction in
the Tangle where each node asks for the opinion of some of its neighbors. After
the vote, a transaction is either definitely liked or definitely disliked by a node.
We would like to keep monotonicity in the sense that if a node likes u then it
likes any transaction u approves, and if the node dislikes v then it dislikes any
transaction that approves v, see Fig. 4. To achieve this, we can safely assume
that we can only like transaction v when we like all of its past cone, and if we
dislike v then we dislike all of its future cone.

In the following two subsections, we will describe two voting mechanisms
we are considering. The first one, called Fast Probabilistic Consensus [68], is
certified by rigorous mathematical proofs; however, this solution requires nodes
to accept connections from nodes which are not neighbors, and uses decentral-
ized randomness, that needs to be acquired as part of an additional layer. On
the other hand, the cellular automaton approach of Section 6.2 does not have
those requirements and seems to be faster from simulation results; however,
this scheme lacks rigorous proofs and requires a stricter autopeering solution to
avoid Eclipse attacks, and formation of “islands” of adversarial nodes. The two
solutions can be considered as different non-mutually exclusive implementations
of the voting mechanism, and they can be used in combination to build a robust
framework.

For more technical details, we refer the interested reader to the source code
of our FPC simulator18, as well the integration as a prototype version of FPC

17It is important to note, that this rule does not include reattachments: If v1, . . . , vk are all
reattachments of the same transaction, we either like all or none of them.

18https://github.com/iotaledger/fpc-sim
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and the cellular automaton approach in GoShimmer19.

6.1 Fast probabilistic consensus (FPC)

The paper [68] introduces a protocol of low communicational complexity which
allows a set of nodes to come to a consensus on a value of a bit by means of (pos-
sibly randomized) voting (see e.g., [7, 23, 24, 34, 35, 57] and references therein
for the vast available literature on this subject). The FPC relies on the idea
that randomised voting, i.e., random queries, is in some situations sufficient for
good performance, and due the small message complexity the protocol becomes
scalable. Another advantage of this randomness is robustness in less reliable net-
works and in situations with inevitable churns (nodes join and leave), e.g., we
refer to [77] for an application of this idea in distributed machine learning.

We mention also the classical work on (probabilistic) Byzantine consensus
protocols, see e.g., [2, 8, 13, 19, 36, 41, 71], where, typically, the communicational
complexity is much larger.

In order to analyze the security of FPC, we must define our assumptions
about the behaviors of the participants in the system. An honest partici-
pant is one that we assume to follow the system’s protocol rules as specified,
hence representing a participant exhibiting no adversarial behavior. A Byzan-
tine (a.k.a., active or malicious) participant is one we make no assumptions
about; such a participant can behave in arbitrary fashion, without any restric-
tion. Since this is the strongest adversarial model we will focus primarily on
Byzantine attacks. We further assume that the Byzantine attacker is omni-
scient, i.e., it is aware of the current opinion of every other node and observes
all communications20 and that the adversary is rushing, i.e., it may delay send-
ing its own messages in any given round until after the honest parties send their
messages in that round. We refer to [39] for more details on threat modeling
and different kind of attackers.

We have to make assumptions on the communication model of the FPC.
We assume the communication between two nodes to satisfy authentication,
i.e., senders and receivers are who they claim to be, and data integrity, i.e.,
data is not changed from source to destination. As we consider omniscient
adversaries we do not assume confidentiality. For the communication of the
opinions between nodes we assume a probabilistic synchronous model, in which
for every ε > 0 and γ > 0.5, a majority proportion γ of the messages is delivered
within a bounded (and known) time, that depends on ε and γ, with probability
of at least 1 − ε. We want to emphasize that, due to its random nature, FPC
still shows good performances in situations where not all queries are answered
in due time.

The aim is to build systems that could withstand the most participants
being Byzantine. In practice we have to make threshold security assumptions,
such as that over half or over two-thirds of the participants are honest. The

19https://github.com/iotaledger/goshimmer
20This is one reason why we do not consider honest-but-curious (a.k.a., passive or semi-

honest) adversaries separately.
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distinguishing feature of the mechanism described in [68] is that a larger number
of adversarial (or Byzantine) nodes is allowed, which may be a (fixed) proportion
of the total number of nodes. Those adversarial nodes intend to either delay
the consensus, or break it (i.e., make at least a couple of honest nodes come to
different conclusions). It is shown that, nevertheless, the protocol works with
high probability when its parameters are suitably chosen, and some explicit
estimates on the probability that the protocol finalizes in the consensus state in
a given time are also provided (see Theorems 2.1 and 2.4 of [68]).

Differently from the classical work in this area, it is not required that the
consensus should be achieved, with high probability, on the initial majority
value. Rather,

• if, initially, no significant majority21 of nodes prefer 1, then the final con-
sensus will be on the value 0 with high probability;

• if, initially, a supermajority22 of nodes prefer 1, then the final consensus
will be 1 with high probability.

To explain why this is relevant in cryptocurrency applications, consider a situ-
ation when there are two contradicting transactions; for example, one of them
transfers all the balance of address A1 to address A2, while the other transfers all
the balance of address A1 to address A3 6= A2. In the case when neither of the
two transactions is strongly preferred by the nodes of the network, by declaring
both invalid we are on the safe side. On the other hand, it would not be a good
idea to always declare them invalid. Indeed, if we do this, then a malicious actor
would be able to exploit it in the following way: First, he places a legitimate
transaction, e.g., to buy some goods from a merchant. When he receives the
goods, he publishes a double-spending transaction as above in the hope that
both would be canceled by the system, and so he would effectively receive his
money back (or at least take the money away from the merchant). To avoid
this kind of development, it would be desirable if the first transaction (payment
to the merchant) which, by that time, have probably gained some confidence
from the nodes, would stay confirmed, and only the subsequent double-spend
gets canceled.

A special feature of the protocol of [68] is that it makes use of a sequence
of random numbers which are either provided by a trusted source [53] or gener-
ated by the nodes themselves using some decentralized random number gener-
ating protocol (provided that the proportion of the adversarial nodes is not too
large) by leveraging on cryptographic primitives such as verifiable secret shar-
ing, threshold signatures, cryptograhic sortition or verifiable delay functions,
see e.g., [17, 65, 73, 75, 44, 10]. More specifically, a reasonable approach could
be to use a variant of the drand protocol23 (already used by other projects such

21Loosely speaking, a significant majority is something statistically different from the 50/50
situation; for example, the proportion of 1-opinion is greater than φ for some fixed φ > 1/2.

22Again, this is a loosely defined notion; a supermajority is something already close to
consensus, e.g., more than 90% of all nodes have the same opinion.

23https://github.com/dedis/drand
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as The League of Entropy24) as detailed in a post on iota.cafe25.
It is important to observe that, even if from time to time the adversary

can get (total or partial) control of the random number, this can only lead to
delayed consensus, but he cannot convince different honest nodes of different
things, i.e., safety is not violated. Also, it is not necessary that really all honest
nodes agree on the same number; if most of them do, this is already enough for
the protocol (that is, the specific task of random number generation does not
require any sort of “strong consensus”). Similarly a random number is also not
required for every round, see Fig. 17 in [16].

6.1.1 The base protocol

We present here only some key elements of the proposed protocol and refer
the interested reader to [16] and [68] for more details. In order to define FPC
we have to introduce some notation. We assume the network to have n nodes
indexed by 1, 2, . . . , n.26 Every node i has an opinion or state. We note si(t)
for the opinion of the node i at time t. Opinions take values in {0, 1}.

At each (discrete) time step each node chooses k random nodes Ci, queries
their opinions and calculates

ηi(t+ 1) =
1

ki(t)

∑
j∈Ci

sj(t),

where ki(t) ≤ k is the number of replies received by node i at time t and sj(t) = 0
if the reply from j is not received in due time. Note that the neighbors Ci of
a node i are chosen using sampling with replacement and hence repetitions are
possible.

As in [16] we consider a basic version of the FPC introduced in [68] in
choosing some parameters by default. Specifically, we remove the cooling phase
of FPC and the randomness of the initial threshold τ . Let Ut, t = 1, 2, . . . be
i.i.d. random variables with law Unif([β, 1−β]) for some parameter β ∈ [0, 1/2].
The update rules for the opinion of a node i is given by

si(1) =

{
1, if ηi(1) ≥ τ,
0, otherwise,

and for t ≥ 1:

si(t+ 1) =

 1, if ηi(t+ 1) > Ut,
0, if ηi(t+ 1) < Ut,
si(t), otherwise.

24https://www.cloudflare.com/leagueofentropy/
25https://iota.cafe/t/distributed-random-number-generator/243
26This assumption is only made for sake of a better presentation; a node does not need to

know every other node in the network. While the theoretical results in [68] are proven under
this assumption, simulation studies [16] indicate that it is sufficient if every node knows about
half of the other nodes.
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Note that if β = 0.5, FPC reduces to a standard majority consensus. The
above sequence of random variables Ut are the same for all nodes, see also the
discussion in the previous section.

We introduce a local termination rule to reduce the communication complex-
ity of the protocols. Every node keeps a counter variable cnt that is incremented
by 1 if there is no change in its opinion and that is set to 0 if there is a change
of opinion. Once the counter reaches a certain threshold l, i.e., cnt ≥ l, the
node considers the current state as final. The node will therefore no longer send
any queries but will still answer incoming queries. In absence of autonomous
termination the algorithm is halted after maxIt iterations.

6.1.2 Byzantines adversaries

We consider the “worst-case” scenario where adversarial nodes can exchange
information freely between themselves and can agree on a common strategy. In
fact, we assume that all Byzantine nodes are controlled by a single adversary.
In [68], three different kinds of these Byzantine adversaries are described and
analyzed in more detail:

• Cautious adversary: any adversarial node must maintain the same opinion
in the same round, i.e., respond the same value to all the queries it receives
in that round;

• Semi-cautious adversary: adversarial node will not give contradicting re-
sponses, however if it suits them they may not respond to a node;

• Berserk adversary: an adversarial node may respond different opinions to
different queries in the same round.

Since the berserk attack strategy allows more degrees of freedom in the
possible responses of the adversary, it is the most problematic one.

6.1.3 Theoretical analysis

We present some theoretical results on FPC. In [68] it is proven that, when the
protocol parameters are suitable chosen, the protocol finalizes in a consensus
state in finite time with high probability. We state a consequence of Theorems
4.1 and 6.2 in [68].

Theorem 1. Let q be the proportion of adversarial nodes. Then, for any choice
of ε > 0, and

1. for any cautious adversary with q < 1
2 ,

2. for any semi-cautious adversary with q < 1
1+ϕ ≈ 0.3827, or

3. for any berserk adversary with q < 1/3,

27Interestingly, the golden ratio ϕ = 1+
√
5

2
appears here.
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there exist, for sufficiently large n, parameters k, β, l and maxIt such that the
protocol finalizes in a consensus state with probability of at least 1− ε.

The above results come with bounds on the values of the different parame-
ters. Moreover, since these bounds are not yet optimal, simulations studies were
performed in [16] on various explicit cautious and berserk adversarial strategies.
For instance, two strategies are presented in the study, where the attack aims for
an agreement failure in the protocol: the cautious inverse voting strategy (IVS)
and the berserk maximal variance strategy (MVS). In the IVS, the adversary
transmits at time t+1 the opinion of the minority of the honest nodes of step t.
In the MVS, the adversary waits until all honest nodes received opinions from
all other honest nodes. The adversary then tries to subdivide the honest nodes
into two equally sized groups of different opinions while trying to maximize the
variance of the η-values.
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Fig. 5: Evolution of the received mean opinions η of the number of undecided
nodes. We consider a network of n = 1000 nodes containing qn malicious nodes
and a quorum size of k = 21. The initial average opinion p0 equals the initial
threshold τ = 2/3.

Fig. 5 compares the effects of the IVS and the MVS on the histogram evolu-
tion of the nodes’ received mean opinions η. In Fig. 5a) and b) the randomization
of the threshold is turned off. We show that the IVS is less efficient and the ad-
versary struggles to keep the opinions split. On the other hand the berserk MVS
strategy performs much better. Fig. 5c) shows that when the random threshold
is activated, the protocol performs well even against the berserk attack.

Furthermore, optimisation studies show that an optimum range for the ran-
dom threshold can be found, that maximizes the resilience to adversary nodes.
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For example, Fig. 6 shows the agreement rate28 under a berserk MVS attack,
against the random threshold window β and the proportion of adversary nodes
q.
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Fig. 6: Agreement rate against the parameter β that decides the randomness
of the threshold, and the proportion of MVS-adversarial nodes. We consider a
network of n = 1000 nodes containing qn malicious nodes and a quorum size of
k = 21. The initial average opinion p0 equals the initial threshold τ = 2/3.

Figs. 5 and 6 show a worst case scenario in the following sense. The perfor-
mances of the FPC are much better if the initial average opinion p0 is not close
to the initial threshold τ = 2/3. It is also worth to note, that an increase of
the quorum size k leads to higher agreement rates and allows FPC to withstand
higher proportion of adversarial nodes.

6.1.4 manaFPC

FPC in its Vanilla version described in [68] is not robust against Sybil attacks
since an adversary could deploy an excessively large number of nodes, thus
inflating the value of q. In Section 3.2 Sybil protection is implemented by
mana. We change FPC such that a node is queried proportional to its mana
and do allow to query a node multiple times. As multiple queries don’t increase
the message complexity (a node just counts the opinion multiple times without
sending multiple queries), this allows creating a bigger quorum using the same
communication overhead. In turn, a larger number of samples increases the
safety of the protocol. In situations with heterogeneous mana distributions,

28The agreement rate is the rate at which the protocol concludes with all nodes having the
same opinion.
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nodes with high mana might be queried by a high number of nodes. Such high-
mana nodes are therefore incentivized to gossip their opinions or to publish
them on the tangle as a data transaction.

To further decrease the message overhead when gossiping their opinions,
nodes can apply monotonicity rules and compress their statements. For exam-
ple, if a transaction is liked that contains two (liked) conflicts in its past, it
would be sufficient to inform with the opinion on the former transaction. We
dub these selected opinions, which effectively vote on the entire future or past
of a transaction, state-votes.

6.1.5 Berserk detection protocol

Since berserk strategies are the most severe attacks, the security of the proto-
col can be improved if berserk nodes can be identified. We, therefore, propose
a detection mechanism that is based on the record of nodes’ responses. In the
proposed berserk detection protocol nodes exchange information about the opin-
ions received in the previous rounds. A subsequent analysis of this information
can then reveal the berserk behavior. Upon discovering malicious voting pat-
terns, nodes would gossip the proofs, such that all of the other honest network
participants drop the berserk node.

The Protocol. We allow that a node can ask a queried node for a list of
opinions received during the previous round of FPC voting. We call such a
list v-list and we may request for it in several ways. For example, the full
response message to the request of a v-list and the opinions could be comprised
of the opinion in the current round and the received opinions from the previous
round. We do not require nodes to apply this procedure for every member
of the quorum or every round. For instance, each node could request it with
a certain probability or if it has the necessary bandwidth capacity available.
Furthermore, we can set an upper bound on this probability on the protocol
level so that spamming of requests for v-lists can be detected. We denote this
probability that an arbitrary query request includes a request for a v-list by p.

A more formal understanding of the approach is the following: assume that
in the last round a node y received k votes, submitted by nodes z1, ..., zk. If
a node x asks y for a v-list, then y sends votes submitted by z1, ..., zk along
with the identities of z1, ..., zk but without their signatures. This reduces the
message size. Node x compares the opinions in the v-list submitted by y with
other received v-lists. If x detects any trace of a suspicious behavior it will ask
the node y to send it the associated signatures that would prove the malicious
behaviour. Having collected the proof the honest node gossips the evidence to
the network and the adversary node will be dropped by all honest nodes. Since
a single evidence for berserk behaviour is sufficient, further evidence does not
yield any additional benefit. Therefore, in order to prevent spam, once a node
propagated a proof for a given node to be berserk, it is not required to forward
additional proofs even though the content may be different.
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Expected number of rounds before detection. To test how reliable this
detection method is and what the communication overhead would be, we carry
out the following calculations. We are interested in the probability of detecting
a berserk adversary since the inverse of this value gives us an estimation of
how many rounds are required to detect malicious behaviour. If the number
of rounds is sufficiently small the protocol allows for fast detection of a berserk
attacker.

Let us consider the following scenario: Among n nodes there is a single
berserk node. In the last round, the adversarial node was queried k times,
which is the expected number of received query requests (if we pick nodes with
uniform probability). Furthermore, it sends kf votes with opinion 0 and (1−f)k
votes with the opinion 1 to different nodes in the network. Let us call the first
group G0 and the second one G1.

The probability that an honest node x requests a v-list from a node from
the group G0 equals pfk/n and p(1 − f)k/n for G1. Note that the events of
receiving v-lists from G0 and G1 are not independent. The probability that x
receives v-lists that allow for the detection of the berserk node equals

P (x receives opinion from G0 and G1) =
p2(1− f)fk3(k − 1)

n2
+O

(k6p3

n3

)
.

Then using the approximation (1 − ε)a = 1 − aε + O(ε2) the probability that
some node detects the berserk behaviour equals

P (Some node detects malicious node) =
p2(1− f)fk3(k − 1)

n
+O

(k6p3

n2

)
.

For example, in a system with n = 10000, k = 30, p = 0.1 and f = 1−f = 0.5
the detection probability is ≈ 0.2. Assuming that the full FPC voting for a
conflict takes about 15 rounds, berserk nodes can be detected within one FPC
voting cycle with high probability.

Improvements: opinion history comparison. In the analysis presented
above, nodes compare opinions from a single, previous round. However, we
can increase the efficiency of the protocol when the nodes compare opinions
from more than just the last round, i.e. nodes may compare entire histories of
opinions rather than only the current and last opinions. By history, we mean a
list of all held opinions by a given node in consecutive rounds. For example, if a
node is in the m-th round on voting on a particular conflict, its history consists
of m bits and each of them corresponds to the opinion in one of the m rounds.
When such a node is asked to give its current opinion it would respond with the
m bits in the message.

Note that nodes could compare the histories of opinions of different sizes.
For example, when a node x receives the voting history from the same node y in
the m1th and m2th rounds (m1 < m2) it could try to find traces of the berserk
behavior on the overlapping m1 rounds. With this method, the effectiveness
of the berserk detection increases substantially. An obvious drawback of this
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approach would be that, in order for such a protocol to work, we would require
each node queried in FPC to send its entire opinion history (on a particular
conflict). This opinion history would grow with each round of voting by one bit.
Moreover, nodes would need to allocate some memory to keep both the history
of their own opinions and the history of the opinions of other nodes. However,
the additional communication cost is not very high.

6.2 Cellular consensus

The second implementation discussed in this paper is cellular automata (CA).
The CA approach, also known as majority dynamics, has originally been devel-
oped as a formal description of the Ising model [48] and is extensively studied,
see e.g., [1, 9, 42, 58, 60, 63, 76, 79]. More recently, it is also adopted in DLTs
projects [55]. One of the biggest advantages of the CA-based techniques over
other consensus algorithms is the opportunity to achieve a very high level of
parallelism. This advantage alone is a sufficient incentive for deeper studies.
Our proposed CA implementation brings the following novel key properties:

• Every node acts as a cellular automaton [22] that, in the presence of
conflicts, changes its opinion only based on the state of its direct neighbors
and always adopts the majority opinion.

• The set of neighbors of a node does not change during one run of the con-
sensus algorithm. In this case, the reorganization mentioned in Section 4
must only happen for different runs, i.e., different conflicts.

• When evaluating the opinions of neighbors, nodes will require a “proof”
that includes the opinions of the neighbors’ neighbors. This will allow
nodes to monitor each others’ behavior and prevents a node from lying
independently of its neighbors.

• Misbehaving neighbors, i.e., neighbors that hold an opinion that is incon-
sistent with this proof, will be dropped immediately. This information is
then also broadcasted to the network for other nodes to verify and mark
that corresponding node as malicious and prevent future connection at-
tempts.

At the beginning of each round, every node sends a “heartbeat” of its current
status. This includes its signed current opinion, as well as the opinions of each
of its neighbors from the previous round, each signed by the issuing node. Since
the previous opinions of the neighbors cannot be faked, every node receiving this
heartbeat can validate that the current opinion is indeed correct and follows the
rules of the consensus mechanism.

We formalize the above ideas in the consensus protocol described in the next
subsection.
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Algorithm 5: Send heartbeat

Function heartbeat(Node i, Round m):
foreach neighbor j ∈ Ni do

send opinion Xm(i) to neighbor j
foreach j′ ∈ Ni \ {j} do

send opinion Xm−1(j′) to neighbor j

Model Suppose that there is a network composed of n nodes, and these nodes
need to come to a consensus on the value of a bit. For clarity, we assume in
the following that each node is directly connected to k neighbors, through the
autopeering mechanism described in Section 4. The set of neighbors of node i
is denoted by Ni. The autopeering mechanism is a key factor for the security of
this approach, since a malicious node should not be able to select or influence
its neighbors.

During each stage of the algorithm, each node holds an opinion on the value
of the bit. The opinion can be either 0, 1 or ⊥, depending on whether the
node prefers 0, 1 or none at all. The opinion of node i in round m is denoted
by Xm(i) ∈ {0, 1,⊥}. We further assume, that each node i has the initial
opinion X0(i) ∈ {0, 1}.

The protocol depends on the following parameters:

• k ∈ N, number of (initial) neighbors of each node.

• M ∈ N, maximum number of rounds.

• ` ∈ N, the number of consecutive rounds with the same opinion after
which it becomes final.

• p : {0, . . . , k} → R≥0, monotonically increasing weight function that maps
the number of neighbors to a weight. This penalizes nodes having fewer
than k neighbors.

Algorithm Each node i knows the opinions of its neighbors j ∈ Ni as well as
the opinions of all their neighbors Nj . This is assured by a broadcasting step
where all the opinions are signed in such a way that the originating nodes as
well as broadcasting node are unforgeable. This is formalized in Algorithm 5.

The consensus mechanism is a CA where a node uses the opinions of its
neighbors to update its own state. When the majority of neighbors support
either 0 or 1, the node adopts that opinion. If none of these opinions has a
majority, it adopts ⊥, i.e., none of them. As long as we assume that the set Ni
is known at least for all of its neighbors i, any node can use these simple rules
to validate whether the reported opinion of neighbor i is consistent with the
opinions of all nodes in Ni. The overall consensus mechanism is more formally
illustrated in Algorithm 6 and an illustration of the CA process for an example
scenario can be found in Fig. 7.
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(a) opinions “collide” (first nodes update opin-
ion)

(b) opinions “compete” (nodes update their
opinions)

(c) opinions “compete” (nodes update their
opinions)

(d) a single opinion “survives” (network
reaches consensus)

Fig. 7: Visualization of the CA consensus process: Each square corresponds to a
node connected to random neighbors. Initially, the two conflicting transactions
are propagated through the network. Then, nodes are consistently adapting
their opinions (0: red, 1: cyan, ⊥: black) before eventually coming to consensus.
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Algorithm 6: Cellular consensus

foreach node i do
Send initial opinion X0(i) to neighbors Ni

for m← 1 to M do
foreach node i do

foreach neighbor j ∈ Ni do
if Xm−1(j) is inconsistent wrt Xm′(j

′) for
j′ ∈ Nj ,m′ < m− 1 then
// drop neighbor j
Ni ← Ni \ {j}

if node i finalized then
Xm(i)← Xm−1(i)

else
// adopt majority opinion

total←
∑
{j∈Ni} p(|Nj |)

if
∑
{j∈Ni|Xm−1(j)=0} p(|Nj |) >

total
2 then

Xm(i)← 0

else if
∑
{j∈Ni|Xm−1(j)=1} p(|Nj |) >

total
2 then

Xm(i)← 1
else

Xm(i)← ⊥ // cancel all

heartbeat(i, m)

if opinion X(i) did not change in the last ` rounds then
mark node i finalized

7 Tip selection

7.1 Importance and Motivation

The Tangle is a data structure built in accordance with the following rule:

In order to join the Tangle, a transaction has to validate two existing
transactions.

The validation of a transaction is a procedure that verifies whether an address
owns the tokens spent29. If transaction y validates transaction x, we say that y
directly approves x. Furthermore, if there is not a directed edge between the
transactions x and y, but there exists a directed path between them, then we
say that y indirectly approves x.

29The actual validation process in IOTA is more complex, and we invite the interested
reader to visit https://docs.iota.org for more information.
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Although the Tip Selection is not part of the conflict resolution in our current
approach to the Coordicide, it still plays many important roles in the Tangle. It
keeps the Tangle growing in an scalable and decentralized way. This is facilitated
by the users being the ones that validate other transactions, such that the flow
of new transactions keeps continuously cementing older ones. Furthermore,
this happens in a way that, as more users are using the network, the more
secure and fast finality can be achieved, since the total number of approvals
of a transactions increases much faster. We also want to emphasize that the
influence of the Tip Selection on properties of the Tangle has been studied
recently, e.g., [26, 37, 54, 69].

It is interesting to notice how the tip selection is one of the main ingredients
that makes the Tangle a network of continuous consensus. This is in the sense
that “young” transactions have less transactions validating them and hence are
prone to induce a small divergence of the ledger state among the nodes. As
more and more new transactions approve a transaction, the more the nodes
become aware of this transaction, increasing the level of consensus over time.
For a network using probabilistic consensus such as with the Tangle, this is
especially important since a higher quantity of approvals translates in an ever
smaller probability of different views among the nodes, and this chance can be
made as small as we need it to be.

The original IOTA white paper originally uses only a TSA based on a biased
random walk to determine the tips to approve. This TSA comes with its own
limitations, such as its computational complexity and that it needs to orphan
branches of possibly honest transactions to resolve conflicts. With the new
consensus mechanism being independent from the TSA, a much faster algorithm
may be used to select tips and incentivise good behavior for the network.

In the rest of this section, we provide an overview of our current candidate for
the default TSA. It is important to stress that, since the TSA is not (and cannot
be easily30) enforced, the choice of the particular TSA is, ultimately, up to the
node’s owner. Therefore, the actors will choose their TSAs in a reasonable way,
as argued in [67]. Because of this intrinsic freedom of choice, and also because
the “space” of all possible TSAs is enormous, it is crucial to have all reasonable
options on the table. We are absolutely not obliged to be ever content with a
particular version of TSA; instead, our vision is that, similarly to the human
society itself, the system will continue evolving. Hence, we believe our current
candidate to be an appreciated upgrade over the random walk based TSA and
we expect the future input we receive to help us to improve the algorithm even
more.

7.2 (Almost) URTS on a subset

In this subsection31 we aim to describe a tip selection rule which is a reasonable
modification of the URTS (i.e., Uniformly Random Tip Selection) algorithm

30It is, however, still possible to perform a statistical analysis on the node’s choices in order
to try figuring out what sort of TSA it is using.

31see also https://iota.cafe/t/almost-urts-on-a-subset/234
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considered in the original whitepaper [66].
Selecting tips uniformly at random has advantages: every (non-lazy) tip gets

eventually picked up with probability 1; also, at least in the situation when all
nodes seek to select tips, the URTS is a Nash Equilibrium (knowing that other
nodes select tips with equal probabilities, a given node has nothing to gain from
deviating from this behavior). Unfortunately, the URTS has the issue of not
demotivating lazy-behavior. One possibility for solving this would be to only
consider URTS on the subset on non-lazy tips, but this is too strict in the sense
that if a lazy connection happens by any unexpected situation, the node would
need to make an reattachment of the transaction. In this proposal we aim to
improve the URTS in a way that it will demotivate such unwanted behaviors,
while still keeping the possibility of promoting lazy transactions a viable option
(therefore, reducing the number of reattachments).

The proposal for this new TSA is that, instead of choosing uniformly a
“good” tip, we check all non-lazy approvals from the subset of good tips, and
select one of those approvals uniformly at random. The selected tip for the TSA
will be the tip from where the selected approval was originated. Observe that it
is natural why this algorithm demotivates lazy behavior (since a lazy connection
cannot be selected, a lazy tip has at most half the probability of a non-lazy tip),
while keeping the possibility of lazy transactions to be promoted and approved
if their issuer is willing to.

Now, let us describe the algorithm, starting by defining what we consider
a “good” tip. Consider a specific node j. Then for any transaction v, let us
denote by

• t(v) the objective (signed) timestamp of the transaction;

• rj(v) the time of solidification of the transaction for this node (i.e., the
time when a transaction and all of its history is received by the node j).

Fix positive constants C1, C
′
1, C2 (which are not very large) and M (which

is large). Suppose that the node j considers v a tip, and v approves v1 and v2.
Then, we define the weight wj(v) of the transaction v for the node j to be null
(hence, being a “bad” tip) in any of the following scenarios:

• if
t(v) /∈ [rj(v)− C1, rj(v) + C ′1]

(i.e., the transaction’s timestamp is either too much to the past or too
much to the future);

• if
max
i=1,2

(rj(v)− t(vi)) > M,

(this is in order to avoid approving transactions that reference something
“too old”).
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Otherwise (if the weight wj(v) was not set to 0 according to the above rules)
define

kj(v) := #{i = 1, 2 : rj(v)− rj(vi) ≤ C2}

to be the number of “nonlazy approvals” that v did. Then, it would be natural
for the jth node to set wj(v) := kj(v). For the tip selection, the node chooses v
with a probability proportional to wj(v).

We may consider further modifications of this method, which are meant
to make it more resilient, for example against deliberate attachments to non-
tips that are not very old. For two transactions u, v where v approves u, we
introduce the sibling number sj(v, u) ∈ N (again, with respect to the node j)
in the following way. If v0, . . . , vk approved u directly and the node j received
them in that consecutive order, then sj(vi, u) = i.

Let f : N → [0, 1] be a nonincreasing function with f(1) = 1 (for example,
f(m) = αm−1 for some α ∈ (0, 1]). Then, set

wj(v) = f(sj(v, v1))1{rj(v)− rj(v1) ≤ C2} (10)

+f(sj(v, v2))1{rj(v)− rj(v2) ≤ C2}.

Again, we then just chose v with probability proportional to wj(v) for tip selec-
tion. To explain why this should be closer to a Nash equilibrium, recall the main
idea of [69]: if some “greedy” actors start favoring a smaller subset of tips, they
would create a competition between themselves (see Fig. 4 in [69] which gives an
idea why “completely greedy” strategies cannot be advantageous for the nodes).
Therefore, they would be penalized if the weights are defined as in (10). This
tip selection should also be more resilient against the aforementioned attack
(when an actor attaches transactions to non-tips, the sibling number of such
transactions typically increases).
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8 Conclusion

In this paper, we outline our approach for the Coordicide project. In particular,
we describe our main ideas around the consensus mechanism, tip selection,
security and protection against attacks, spam control and autopeering; all of
which provide the building blocks that are crucial for the Coordicide project.
Our proposal towards the path to Coordicide is now well-defined, and we are
currently implementing and evaluating various options in our prototype code
GoShimmer.

Acknowledgements

We thank Jon Crowcroft, Michael Huth, Emil Matejka, Robert Shorten, Jonas
Theis, Roman Vitenberg, and Olaf van Wijk for comments and suggestions on
the previous version of this paper.

48



References

[1] Mohammed Amin Abdullah and Moez Draief. Global majority consensus
by local majority polling on graphs of a given degree sequence. Discrete
Applied Mathematics, 180:1 – 10, 2015.

[2] Marcos K. Aguilera and Sam Toueg. The Correctness Proof of Ben-Or’s
Randomized Consensus Algorithm. Distributed Computing, pages 371–381,
2012.

[3] Vidal Attias and Quentin Bramas. How to choose its parents in the tan-
gle. In Mohamed Faouzi Atig and Alexander A. Schwarzmann, editors,
Networked Systems, pages 275–280, Cham, 2019. Springer International
Publishing.

[4] Vidal Attias, Luigi Vigneri, and Vassil Dimitrov. On the decentralized
generation of thersa moduli in multi-party settings, 2019.
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