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Abstract

The document introduces IOTA Smart Contracts, a distributed ledger technology
(DLT) and a multi-blockchain smart contract framework with ability to transact
cross-chain in a trustless and scalable manner on the IOTA UTXO ledger on layer 1.
The main goal is to present the reasoning behind the concept and the architectural
elements. The style of the whitepaper is informal.

Disclaimer. Design decisions presented in the whitepaper may change in the future.
Some topics are preliminary plans and are under active research. There’s no guar-
antee that the actual development path will follow the guidelines of this document in
detail.

Many thanks to Levente Pap, David Hagman, David Phillips, Jorge Silva and Gunnar
Stenzel for feedback, numerous suggestions and edits of the text.
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1 Summary

In the whitepaper we introduce the rationale behind IOTA Smart Contracts (ISC) and
present its main architectural decisions. ISC is a part of the IOTA1 distributed ledger
technology (DLT).

ISC is a framework that extends the base protocol of layer 1 (L1) of the IOTA DLT by
introducing multiple programmable ledgers on top as layer 2 (L2). The result is a multi-
chain environment where all chains are anchored on the IOTA Ledger at L1. Each chain
is a separate blockchain with smart contracts on it, functionally equivalent to Ethereum
smart contracts and fully composable between each other. The ISC environment also
enables the trustless transacting and composability of smart contracts between different
chains over L1 with high throughput and high scalability. Theoretically, the ISC as dis-
tributed and sharded multi-chain DLT which encompases both L1 and L2 can scale up to
hundreds of thousands of smart contract transactions per second.

The ISC concept also includes a significant extension of the IOTA Unspent Transaction
Output (UTXO) ledger with configurable UTXO types and advanced tokenization fea-
tures. The combined L1 and L2 concepts with advanced tokenization features make ISC
a unique combination of UTXO ledger, multi-chain scalability, and quasi-Turing complete
programmability.

This whitepaper is a condensed presentation of the efforts made on ISC in research and sev-
eral working prototypes and releases during 2019-2021. It represents the state-of-the-art
of the ISC concept of the early beta release of ISC in October 2021 for the experimental
IOTA 2.0 DevNet. The whitepaper describes the concepts, goals, rationale and archi-
tecture of ISC in a generic manner, independent of a specific version of the base IOTA
protocol.

IOTA Smart Contracts are implemented as Wasp node software2. This document may
include particularities or even implementation details of certain features. This document
also includes preliminary statements and features that are planned to be implemented in
the future and/or are in active research. There is no guarantee that those features will be
implemented the way they are described in this whitepaper.

2 Goals and use cases

Scalability is the main challenge in the DLT realm, as well as scalability-related prob-
lems such as congestion and the ever-growing cost per transaction. In its original form,
blockchain is not a scalable setup. There is a growing conviction in the market that the
future of the DLT and crypto industry is multi-chain and multi-ledger. The
multi-chain vision of DLT is often associated to sharding of L1 by introducing multiple
parallel L2 ledgers.

1IOTA website: https://www.iota.org
2Wasp node GitHub repository: https://github.com/iotaledger/wasp
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Multi-ledger, however, also means that each distributed ledger is secured by its own set
of validators (or ’miners’). This fact makes it difficult to transfer value between two
ledgers/blockchains without a trusted party in between, such as a bridge or a relay. The
cross-chain gap also breaks the comfortable composability of smart contacts on the same
blockchain, and this is the main limitation of multi-chains systems.

To address these challenges, the IOTA Foundation’s ISC aims to provide a universal
framework and platform for multi-chain DLT hosting parallel yet composable smart
contracts, enabled by a native ability of trustless cross-chain transactions which use
the scalable IOTA ledger as a backbone. With ISC, the IOTA Foundation aims to build
highly scalable distributed ledgers with real-world industry requirements and throughput
of hundreds of thousands of writes and value transfers per second.

ISC is designed with the following broad classes of use cases in mind:

• Consortium deployments of multi-chain smart contract networks running on top
of the public IOTA network.

• Open permissionless multi-chain environments and ecosystems on top of the
public IOTA network. Scalable public decentralized apps (dApps), needed for ex-
ample for Decentralized Finance (DeFi).

• Corporate deployments, for both public and private institutions, private, semi-
closed and open deployments, such as distributed ledgers at the pan-European and
global scale for public, energy, logistics, food and other industry verticals.

ISC also aims to provide a comprehensive framework for the tokenization of any on-
ledger assets in the multi-chain/multi-ledger environment. Any smart contract asset on
any chain, be it ERC-20 token, sensor reading of the solar panel, or art NFT, can be
tokenized and transacted between multiple smart contracts on multiple chains, without
any additional trust in between.

ISC offers a multi-ledger paradigm. Each ledger, whether lightweight or heavy, is a module
composable with others to build systems of arbitrary scale. In this paradigm, we see the
L1 ledger together with multiple ledgers on L2 as one protocol with huge scalability and
potential for different use-case-specific configurations.

3 Rationale

ISC aims to extend the base IOTA distributed ledger protocol, a scalable, parallelizable,
fee-less and miner-less DLT, with distributed trustless computations on the ledger.
Here we provide the rationale on how we achieve this goal and why we chose this approach.

A smart contract is essentially a state machine that, upon external input such as a trigger
or a call, takes the ledger state and produces an update to it. The state machine, its
program, is part of the ledger itself. The smart contract becomes an extension of the
ledger state transition function. Instead of having a hard-coded logic of the transaction
as the only option of state transition, smart contracts enable an extension of the static
transaction concept with the pluggable logic of the ledger state transition function. The
computational model of the pluggable extensions may be in the range starting from limited

4



configurable logic and scripting, like Bitcoin scripts3, up to the rich quasi-Turing complete
programming environments offered by Ethereum Virtual Machine4 (EVM) and Solidity5.
With ISC, we are aiming at the latter.

Let’s look at existing paradigms of the programmability of ledgers.

3.1 Blockchain smart contracts

Smart contracts are programs run by a distributed processor, i.e. many processors reach
consensus on the result of computations. The essential requirement for smart contracts is
the objective (ledger) state, i.e. a state equally perceived by all smart contracts updat-
ing it. Objectivity here means that all nodes running the distributed processor have full
agreement on the current ledger state, the main input for computations.

Blockchain, a totally ordered chain of ledger updates, achieves the global objective state
by serializing state updates to the ledger through a strictly sequential chain structure and
distributed consensus mechanism. The consensus mechanism allows several competing
versions of the global state at the same time, before eventually eliminating all except one.

There are two well known models of the ledger in the DLT space: the UTXO ledger
model and the account-based ledger model.

The UTXO ledger consists of UTXOs (unspent transation outputs, see Annex: Assump-
tions about L1 UTXO ledger) which are grouped into accounts by the target address.
Therefore, the asset balance of the UTXO account is a sum of balances over multiple
UTXOs. The essential property of the UTXO ledger is that it allows parallel writes, i.e.
parallel updates of the state of the account. In this case, for a consumer of the account it
makes the state of the UTXO account non-deterministic.

In the account-based model, accounts and associated balances are global atomic enti-
ties, which can only be updated sequentially. This means that the account balance in an
account-based ledger is deterministic (or objective).

While blockchains use both UTXO (such as Bitcoin6 and Cardano7) and account-based
(such as Ethereum8) ledger models to represent the global objective state, the account-
based model with global accounts is natural for blockchains, while putting UTXOs into
blocks cancels the parallel nature of the UTXO ledger.

The existence of a global and objective state immediately makes the blockchain a nat-
ural environment for smart contracts. A blockchain ledger makes the perception of
the ledger state exactly the same (objective) for all smart contracts, updating it in the
same block.

The blockchain smart contracts are usually quasi-Turing complete, i.e. they can imple-
3Bitcoin script: https://en.bitcoin.it/wiki/Script
4Ethereum Virtual Machine: https://ethereum.org/en/developers/docs/evm/
5Solidity: https://docs.soliditylang.org/en/v0.8.9/
6Bitcoin: A Peer-to-Peer Electronic Cash System: https://bitcoin.org/bitcoin.pdf
7Cardano UTXO https://docs.cardano.org/plutus/eutxo-explainer
8Ethereum WP: https://ethereum.org/en/whitepaper/
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ment any algorithms by assuming unlimited time and memory resources. For this, they
can use universal computation models and languages such as EVM/Solidity, WebAssembly
and so on. The quasi signifies that the run space of those programs is actually limited at
runtime on purpose, usually by introducing the concept of gas, in order to prevent abuse
of computer resources.

The synchronous perception of the same state by blockchain smart contracts makes them
highly composable, a feature actively used in blockchain ecosystems like DeFi.

At the same time, the sequential and synchronous structure of blockchains also intro-
duces the fundamental bottleneck of blockchain-based DLTs into smart contracts and is
ultimately responsible for their limited scalability. In simple terms: you can’t run
parallel smart contracts and parallel state updates on the global state of the
blockchain. Efforts to run them faster and faster do not take away the fundamental
bottleneck, while the sharding usually splits the global ledger state into sub-states and,
strictly speaking, the ledger stops being a blockchain.

As it is explained below (see IOTA DLT), the DAG structure of the IOTA ledger and
IOTA consensus does not allow to have global objective state of the ledger’s account for
the nodes. This fact is fundamentally related to the parallelism and scalability of the
IOTA L1 ledger. Absence of the global objective state on the IOTA ledger prevents IOTA
from implementing the model of blockchain smart contract on its L1 directly.

3.2 UTXO smart contracts

UTXO smart contracts (also known as UTXO scripts) is a computational model which
limits the run space of the program to one transaction. Due to the parallel nature of the
UTXO ledger, UTXO smart contracts run parallel on independent branches of the state.

There are well-known examples of UTXO ledger programmability on L1 with UTXO
smart contracts; for example, Bitcoin scripts or Cardano’s EUTXO model9. It is straight-
forward to implement these on any UTXO ledger, including the IOTA UTXO ledger.

One might ask: why not use this approach for adding programmability to the IOTA
ledger?

The short answer is that we follow this model for certain programmability of L1, in order
to support ISC and advanced tokenization. However, as a universal approach to smart
contracts, it is too limited for real-world industry use cases. We will elaborate on the
reasons for this.

The throughput of UTXO smart contracts is limited by the throughput of the L1 itself.
Besides, UTXO scripting introduces significant overhead on top of the throughput of the
base layer, so it does not meet the requirements of the real-world industry.

The computational model of UTXO smart contracts is too limited compared to the
expressiveness and richness of quasi-Turing complete smart contracts, which is the main-
stream option in the blockchain ecosystems. The best example is Ethereum with EVM

9The extended UTXO model: https://iohk.io/en/research/library/papers/the-extended-utxo-model/
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and Solidity.

A UTXO smart contract (also known as UTXO script) does not have access to the global
state and cannot make assumptions about the global order on the ledger (otherwise it will
not be scalable or it will lead to a need for centralization; for example, delivery of scripts to
each L1 validator and similar). Therefore, the state consumed and produced by a UTXO
smart contract is fundamentally limited by the boundaries of the transaction. This pre-
vents UTXO scripts from using the usual machinery of full-scale programming, like the
one offered by EVM and Solidity. Instead, the programming of realistic dApps on UTXO
scripts requires unorthodox approaches and tools (including languages) to represent the
computations as a collection of functionally limited finite state machines and data struc-
tures. This approach results in significant performance and user experience (UX) penalties.

While the overall UTXO programmability approach offers notable strong points, includ-
ing verifiability of UTXO scripts, in our opinion this does not justify the practical dis-
advantages in many (or most) real-world use cases. Many industry use cases, including
DeFi, need unbounded data structures, complex algorithms, good UX, scalability and high
throughput.

Fee-less nature of the IOTA ledger. The absence of fees in the IOTA ledger pre-
vents us from introducing full-scale programmability through UTXO scripting because it
does not enable the easy introduction of gas and gas budgets concepts for computations
on L1. This is a necessary feature to prevent the abuse of processor and storage resources
by smart contract programs.

3.3 IOTA’s approach to smart contracts

Removing the scalability bottleneck is one of the main goals of the IOTA DLT. With ISC,
we aim to remove bottlenecks in the smart contracts system via horizontal scaling.

In short: we aim to enable parallel smart contracts without losing composabil-
ity. To achieve this, we combine the two approaches, the blockchain smart contracts on
L2 with advanced UTXO types on L1, in one framework.

3.3.1 IOTA DLT

IOTA overcomes known scalability bottlenecks in its distributed ledger by using partially
ordered data structures based on Directed Acyclic Graph (DAG), instead of the strictly
sequential and totally ordered structure of the blockchain.

The DAG structure appears in IOTA in both the ledger and the consensus layers. Two
essential components of IOTA protocol together differentiate it from blockchain platforms:

IOTA Ledger, also known as UTXO ledger (or sometimes called UTXO DAG, even if
it is a more complex data structure than a DAG). For a UTXO transaction, there is
no need to access the global state of the account, so parallel updates (or ’writes’)
to the ledger become possible. It is a necessary condition for scalability and high
throughput.

IOTA Tangle, a permissionless, feeless and miner-less consensus protocol based on DAG10.
10IOTA research papers: https://www.iota.org/foundation/research-papers
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The Tangle consensus protocol is based on validation of the ledger by the users of
the ledger themselves, not by miners. The user adds transaction to the ledger by
validating two already attached transactions and their past cones, and then attaches
its transaction to those two, thus extending the Tangle by voting on selected trans-
actions. The equilibrium in the consensus comes from the assumption that optimal
strategy for the (honest) user is to attach its transaction so that to maximize its
chances to be picked by others, and that is possible only if you attach to the valid
ledger in the history.

The IOTA Tangle enables global consensus on the UTXO ledger state without the
need to impose a linear order among unrelated ledger state updates (transactions).
That allows consensus on the state of the account without compromising the scalable
nature of the UTXO ledger.

The two components above can’t live without each other. The combination of the two
gives the IOTA DLT a unique feature regarding scalability: in theory, an unlimited num-
ber of parallel writes to the ledger.

Note that blockchain-based consensus protocols, if applied to the UTXO ledger model,
cancel out scalability advantages offered by the latter, by locking the inherently parallel
structure of the UTXO Ledger into the blocks and strict sequence of the chain.

IOTA approaches the scalability problem by enabling parallel updates of the global dis-
tributed ledger. This makes the approach fundamentally different from many blockchain
platforms which use classical Nakamoto or BFT consensus blockchain systems on L1, no
matter if their ledger model is UTXO based, or based on a system of global accounts.

The scalability advantages lead to inevitable trade-offs, namely the impossibility for a
deterministic program to assume any global state. An account on the UTXO ledger is a
collection of UTXOs with the same target address. It can be updated by asynchronous
entities in parallel, therefore it may be perceived differently by different parties. This
makes the state of the UTXO account (and the whole ledger state) subjective, i.e. differ-
ent parties (for example, smart contracts) do not always have an equal view of it.

The absence of an objective global state of an account prevents IOTA from implement-
ing quasi-Turing-complete programmability of the L1 in the form of classical
blockchain smart contacts.

3.3.2 Multiple layer 2 ledgers anchored on layer 1

IOTA choose to build multiple totally ordered ledgers on top of the IOTA Ledger, essen-
tially layer 2 (L2) blockchains, in combination with extended functionality of the UTXO
ledger on L1 to support the L2 multi-chain environment through state anchoring and
advanced tokenization features. This achieves the following:

• Quasi-Turing complete smart contracts with rich expressiveness and composability
on each L2 chain.

• Scalability of the system due to massive parallelization through multiple parallel
ledgers (also known as ’shards’) and parallel smart contracts.
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Figure 1: Multiple L2 chains anchored on L1

Each such chain will host many smart contracts, all of them sharing the same objective
state of the chain. This makes it possible to run quasi-Turing complete smart contracts
on it (including the original EVM contracts) and, at the same time, control assets on the
UTXO ledger on L1. Each chain will also be able to process high throughput of transac-
tions sent directly to the chain.

The scalability of the multi-chain system is enormous. For example, what would be a
theoretical configuration with 100,000 TPS of throughput? Let’s conservatively assume
each such chain is capable of processing 200 transactions per second (e.g. sensor readings)
in parallel. So, 500 chains will be able to settle a total of 100,000 readings per second
into their ledgers.

How many resources will those 500 chains consume on L1? Each chain produces and
confirms one state anchor transaction (or a ’block’) per 10 seconds, i.e. 2000 transactions
per block. All of those 500 chains will anchor their states on the L1 ledger once per 10
seconds, so they will consume only about 50 TPS on L1.

3.3.3 Validation of ISC chains

A validator is a real-world entity (a person or organization) that is incentivized to
secure the ISC chain by validating it via participation in a distributed consensus with
other validators. A validator is identified in the network with its public key; however,
ISC is not explicit about how the validator is incentivized to validate the chain. We cover
some possible options in Validation incentives.

The validator owns one or more validator nodes (currently implemented as Wasp nodes).
Each ISC chain is run by its own set of validator nodes. Each validator node validates
the chain on behalf of the validator it belongs to. So, whenever we talk about the
behavior of a validator node, correct or faulty, the responsibility and motivation of such a
behavior are linked to the validator, a real world entity.

To run an ISC chain, validators form a finite group called a committee of valida-
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tors and delegate their validator nodes to it. The committee of validators runs a chain
by collectively taking control of the L1 account (known as the ’chain account’) as one of
the inputs and produces updates to the account.

• The committee of validators runs a Byzantine Fault Tolerant (BFT) consensus pro-
tocol on state updates/blocks. This makes an ISC chain and smart contracts on it a
fault-tolerant and distributed system, in which ⌊2N/3⌋+ 1 of non-faulty validators
is enough to produce valid state updates (here N is the number of validators if the
committee).

• The committee of validators can be rotated depending on the governance model.
By rotating the committee of validators, validators can be deleted, added, or
replaced.

• We enable the validators of the chain to control the account on L1 through thresh-
old signatures as a proof of consensus among validators (see also alternatives
approaches in Validity of the state transition). Each validator node in the commit-
tee owns its private key share which is used to produce a partial signature of the
transaction. To produce a valid threshold signature for the transaction, a quorum
of ⌊2N/3⌋+ 1 validator nodes is enough to cooperate. The cooperation of validator
nodes and signature aggregation is a part of the consensus process.

• To become a committee of validators, nodes run a distributed key generation
(DKG) process. After the DKG procedure, each validator securely generates and
keeps in its possession a private key share known only by itself.

We may see each ISC chain as a distributed wallet run by a distributed set of validators:
the “wallet” takes assets incoming to the account and updates the account according to a
program.

As noted above, there is no direct way on the IOTA ledger (L1) to see the objective
state of the account for such a “wallet” on different nodes. This makes the running of
consensus on ISC different from classical blockchains (e.g. Bitcoin):

• In classical blockchain consensus, the validators (or ’miners’) each compute their own
version of the future state based on the assumed current state and a set of transaction
proposals chosen by it (this also creates the phenomenon of miner extractable value,
MEV). The current state is a valid state for other miners, so the deterministically-
computed future state is valid for them too. Validators then come to a consensus
on which version of the future state to use in the global ledger, for example by
running the Proof of Work (PoW) competition.

• In ISC, the current state of the account is non-deterministic, so the validators must
first reach a consensus on the present state. The result is consensus among valida-
tors on the current state of the account and on other non-deterministic inputs (such
as the batch of requests to be processed). After consensus on inputs is reached, the
rest is just a deterministically verifiable computation run by VM; therefore, each
validator node can compute it itself.

So, to provide a global objective state for smart contracts, we extend the accounts on the
IOTA Ledger by building (block)chains on top. The committee of validators of the ISC
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chain runs a consensus on the state of the account. The approach of extension of the
UTXO account with the chain on top of it can also be seen as L2 sharding of the UTXO
ledger.

This way we can have as many parallel ledgers on L2 as the number of possible ac-
counts on L1, i.e. theoretically unlimited. We call them chains, also known as smart
contract chains or ISC chains.

Each chain controls on-chain assets deposited to the chain’s account and commits
its state to the same account on L1. We call this process state anchoring.

3.3.4 Validity of the state transition

By providing a valid threshold signature of the state anchor transaction, the chain pro-
vides proof of consensus (i.e. the proof that chain validators reached consensus on the
state transition), because only a supermajority of ⌊2N/3⌋ + 1 of the validators can pro-
duce a valid threshold signature. Without a proof of consensus (a valid signature), the L1
ledger will not confirm the transition of the state by consuming state anchor output and
producing the next state anchor transaction.

This fact places trust in the validity of the state transition entirely on the quorum of
chain validators. Once the state anchor is confirmed on L1, the state transition is final-
ized and becomes immutable and irreversible. However, the L1 ledger cannot validate the
state transition. The colluding majority of ⌊2N/3⌋+ 1 validators may produce an invalid
state transition with a valid signature, for example, to allocate funds not according to
deterministic prescriptions of smart contract programs. That would be an example of
misbehavior, similar to a 51% attack on PoW blockchains.

Methods of preventing this kind of majority attacks are in the realm of game-theoretical
security, such as the one used in Ethereum optimistic rollups. See Security considerations
for more details.

Threshold signatures are a well-understood and simple approach to proof of consensus
with great performance characteristics. It is our main approach for anchoring the state
on ISC chains.

The alternative approach with powerful properties would be to enable control of the chain’s
account (and the state transition) by validity proofs, instead of proofs of consensus with
threshold signatures. This is a direction based on zero-knowledge proofs. The validators
collectively compute the next state of the chain and provide compressed cryptographical
proof that the state transition was computed by deterministic algorithms of the virtual
machine. The zero-knowledge proof is checked on L1. Its validity is a condition for the
state transition to occur on L1.

The main challenge of such approach is the complexity of the virtual machine that com-
putes the zero-knowledge proof and the fact that this process is computationally very
heavy.

The valdity proof approach is being researched as a possible future direction for state
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anchoring in ISC.

3.3.5 Trustless cross-chain transactions

Through anchoring, the smart contracts on the ISC chain are able to own and manipu-
late L1 assets on the IOTA ledger according to their algorithms. The same mechanism
enables smart contracts to exchange native IOTA assets with other smart contracts on
other chains (i.e. cross-chain) without any additional trust or bridging.

The state of the smart contract chain is decoupled from the state of other smart con-
tract chains. That makes smart contacts parallel (i.e. with asynchronous state) on differ-
ent chains, yet enables cross-chain interoperability and composability through trust-
less transacting by utilizing IOTA’s trustless and feeless L1 asset transfers between
chains.

Inside one smart contract chain, we provide an environment at least functionally equivalent
to a classical Ethereum smart contract platform, including full synchronous composability,
based on synchronous access to the global state of all smart contracts on the chain. At
the same time, multiple chains transaction over the same distributed ledger improves the
global properties of the platform, scalability in particular.

3.3.6 Extension of the UTXO Ledger

To achieve the functionality described above, we significantly extend the UTXO ledger on
L1. With this extension, we aim to achieve:

• Support of L1 for anchoring the L2 chains;

• Enabling of on-ledger transactions between smart contracts and chains; item Intro-
duction of advanced tokenization features on L1 and L2 for cross-chain composability
of smart contracts.

See more details in Annex: Assumptions about L1 UTXO ledger.

4 Validation incentives

As noted above, validators delegate their validator nodes to committees of validators in
order to validate ISC chains on their behalf. Why would a validator spend its resources
to run validator nodes?

In general, ISC is not specific about the exact mechanisms of incentives for validators,
the way the incentive mechanism for miners is built into the Bitcoin protocol. ISC targets
both permissionless and corporate environments, both fee-based and fee-less; therefore,
the intention is to be open to all use cases. Here we discuss several options.

4.1 Fees

One option is the incentivization of validation based on fee revenues. Validators are paid
fees via their validator nodes for resources provided. Usually the fees are collected from
smart contract users (also known as requesters) and distrubuted to validators. Another
possible model would be the owner (also known as governor) of the chain to remunerate
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validators directly for their provided resources. In any case, the motivation of the validator
to provide resources to validate the chain is tied to the future expected revenue streams
from fees. Financially, it can be modeled as a net present value of the future expected
income. The loss of such future income (for example due to the malfunction of the corre-
sponding node) is an economic disincentivization (or punishment) for such behavior. The
fee revenue is the main incentivization method for validation in a permissionless validation
environment.

The fee collection mechanism in ISC is in-built on the virtual machine level. It is re-
sponsible for charging fixed and/or gas-based fees from requesters, i.e. the users of the
chain’s services. The charged fees are distributed among validators of the chain in a fair
fashion. Due to the nature of the BFT consensus used, “fair” means that collected fees
are distributed equally (on average over time) to the validators. However, certain contri-
bution characteristics, such as availability rate and similar factors, may also be taken into
account. The fee policy is defined by the Governance of the chain.

The collected fees are split into two optional parts: validator fees go to validators of
the chain and owner fees go to the governor of the chain, for example a Decentralized
Autonomous Organization, DAO.

4.2 Feeless

In the corporate or private setup, the validation of chains is incentivized by use-case-
specific motives. The consortium members are the validators of the chain. So, motivations
to run a validator node are identical to motivations to participate in the consortium. This
kind of setup does not require any fee-based economical incentives, so the chain can be
completely feeless. However, even in the closed setup, fees may be used in a way defined
by the consortium policies, for example in order to prevent spam attacks and similar
motives.

4.3 Incentives to validate L1

The user adding a transaction to the IOTA L1 ledger is also validating the L1 ledger: the
submission of the transaction to the Tangle is also an act of validation of the past cone of
the ledger, that is how IOTA Tangle consensus protocol works.

In the case of ISC chains, the users of the IOTA L1 ledger are validator nodes of the
chain on L2. The validator nodes collectively produce an anchor transaction and post it
to the L1. This way, each validator of an ISC chain (through the L2 validator nodes it
runs) naturally has interest for transactions produced by its validator nodes to be con-
firmed on the L1. So the validator becomes a user of the IOTA L1 ledger and therefore
has to validate it.

However, the ISC validator node on L2 cannot validate the IOTA L1 ledger itself, so
it must trust the IOTA L1 node to which it is connected to attach its transactions to the
Tangle. The only way to post the transaction to L1 without needing to trust a third
party running the IOTA node is to run the IOTA node by the validator itself. It
means each L2 validator has a clear motivation to run its own IOTA node as a trusted
and secure access to the L1 ledger, in order to do a proper attachment to the Tangle and
prevent eclipsing, downtime etc.
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In other words, each L2 validator has a clear motivation to run its own IOTA node,
thus becoming a validator for the IOTA L1 ledger.

5 Security considerations

ISC is a framework (or a tool) for building distributed ledgers; therefore, it is open to
all kinds of configurations. In particular, it is not explicit about what model of game-
theoretical or tokenomical security to use. The above overview of incentivization is the
basis for different use-case-specific approaches to the question of security in the chain.

5.1 Introduction

The security of a distributed ledger depends on its validators. ISC chains are validated by
finite (yet rotating) committees of validators. ISC is not specific about how exactly those
committees are formed.

The committee of validators is a different validation setup from Proof of Work blockchains,
where anybody can validate the ledger (in other words, produce the block) if they have
enough hashpower. Permissionless validation offers high liveness and security but no real
finality and limited scalability. It motivates the market to search for faster and cheaper
alternatives.

In ISC, we uses committee-based BFT consensus, a well-understood option with excellent
performance characteristics. The trade-off here is that nodes can’t decide by themselves
to be a validator for a chain. (It should be noted, however, that this does not prevent per-
missionless participation in the validation of chains. See Shared security: a permissionless
setup).

We see ISC as a tool and ISC chains as building blocks for all kinds of systems, dApps
and ecosystems. We see the right approach to security of validation as use-case-specific.
It can be approached from different angles depending on what we want to achieve in each
specific case.

The assumption of a ledger being distributed (fault-tolerant), decentralized and trustless
usually means that we should not and do not trust any one particular validator to be
honest. However, to a certain extent, we trust all validators as a whole. We give ourselves
a reason to trust the distributed ledger by looking into its validators and their distributed
consensus process on the ledger state. The trust may be seen as a perceived security in
the distributed ledger, i.e. how safe we think our assets on that distributed ledger are.

The security itself can be modeled in different ways and from different angles. To simplify
the matter, we assume the security of the DLT is defined by the chance that a certain
majority of validators (depending on specific consensus mechanisms) will collude to co-
ordinate their activity in order to produce an invalid state transition. An invalid state
transition is a result of computations different from the one prescribed by the determin-
istic state transition function of the ledger. That is what “validators stealing my funds”
essentially means.
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In systems with permissionless validation running Nakamoto PoW consensus, like Bit-
coin or Ethereum, any entity can become a validator at its own will. The chances of
collusion (51% hashpower) depend on dynamic situations (i.e. how deep is the concentra-
tion of hashpower) and game-theoretical factors, such as what is there to gain from the
collusion among dominating validators (the mining pools). Systems with permissionless
validation usually rely on a motivational feedback loop to attract more validators to make
the system more secure (more expensive to attack) and, as a consequence, incur a higher
total cost of running the system and scalability bottlenecks. Systems with permissionless
validation usually are very trusted, even when it is enough to collude four or so top val-
idators to take control over the state transition. The source of trust is the fact that any
misbehavior is public, provable and traceable back to the colluding parties. The implicit
game-theoretical reasoning behind this high level of trust is that, under such conditions,
collusion will bring a net loss for the colluding parties.

In a so-called permissioned setup, a node cannot just decide by itself to become a valida-
tor for the ledger: it must fulfill certain conditions to be accepted as a validator. Many
systems based on BFT consensus are permissioned in this sense. Many real-world systems
are permissioned too, for example, while the representative democracy is permissionless
(anybody can be elected), the parlament is permissioned (one must be elected by others).

In ISC chains, the committee of validators is a distributed and fault-tolerant system.
It is enough to have ⌊2N/3⌋+ 1 of non-faulty nodes for the chain state to be correct.

The committee of validators itself is a permissioned setup in a sense the nodes can’t
decide by themselves to become a validator. Instead, all nodes in the committee of val-
idators are bound together via a decentralized DKG procedure. It essentially means that
each validator node has to be “co-opted” into the committee by the other nodes. So, this
is kind of an agreement between the validators. The main question is, how trusted can
this agreement be?

In an ISC chain, ⌊N/3⌋ of faulty (misbehaving) validators can stop the chain from pro-
ducing state updates (it won’t produce a wrong result in this case). To produce a wrong
state update, ⌊2N/3⌋+ 1 validators must collude.

The chances of ⌊2N/3⌋ + 1 of validators colluding depends on many factors, which all
depend on the particular setup of the committee. Here we will present several examples
of use case-specific approaches.

5.2 Consortium

A common setup in many corporate use cases for a distributed ledger is a consortium,
which forms a committee of validators. Consortium partners do not usually trust each
other, they are legally bound and they have their real-world reputations. The less consor-
tium partners trust each other the better because misbehavior by any individual party is
provable in a deterministic system and competitors are constantly monitoring each other.
So, the less trust consortium partners in the committee of validators place in each other,
the more secure the chain.

A common reason to form a consortium is exactly because fiercely competing parties
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do not trust each other yet need to establish a common ground to transact between
themselves. So, consortium partners may leave the consortium and others may join, but
collusion among a consortium of competitors is highly unlikely. This makes a consortium
of unrelated parties as a whole a highly trusted setup.

Most corporate use cases for distributed ledgers (for example in energy, logistics or fi-
nancial services), are consortiums of industry market players, (competing) companies and
regulators. The public sector examples of consortiums can be treaties like the Schengen
treaty or the European Union itself.

Similarly, a consortium of competing crypto exchanges running an ISC chain or chains
with a Decentralized Exchange (DEX) in a consortium setup will be way more trusted
than any centralized exchange, run by one entity.

5.3 Corporate or DAO setup

An organization may want to distribute a system among its departments. The fact that
validator nodes are run by different departments across the globe would make a fault-
tolerant system trusted by the organization’s headquarters (which do not a priori trust
its departments) and by the clients of the organization (which trust the organization to a
certain extent anyway).

A corporation may want to outsource the validation of its core chains to a distributed
set of external validators, by asking each of them to stake funds as collateral to protect
against misbehavior. The hiring of external validators may take form of bidding in an
open market, essentially a permissionless setup. The setup may also include elements of
DAO, for example voting on certain decisions. An example of such a setup would be the
Binance Smart Chain11.

A distributed autonomous organization (DAO) is essentially a corporate setup, governed
by a community. It may want to outsource validation of chains to other distributed parties
just like any other organization, by asking for security bonds to prevent misbehavior.

5.4 Shared security: multiple chains with shared validators

Let us say the same validators validate multiple ISC chains. The same set of validators
form a committee for each chain. In this configuration, all these multiple chains will
have the same source of trust, and therefore shared security. The trustless trans-
actions between those chains remain inside the same trust assumptions regardless of the
particular chain. It makes this kind of multiple chain system one sharded distributed
ledger with many parallel shards, a highly scalable system. It will run parallel yet in-
teroperable smart contracts on it.

This configuration may be used for a consortium or corporate setup. For example, the
same DAO could be running separate parallel chains for different functions: tokenization,
DEX, oracles, other dApps and so on. The scalability of such configuration is practically
unlimited.

11Binance Smart Chain Validator: https://docs.binance.org/smart-chain/validator/overview.html
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5.5 Shared security: a permissionless setup

By permissionless setup, we understand the ability for any entity to come and claim
its role as a validator for a chain in a open and transparent market for validators.

For a permissionless setup for ISC chains, we envision security architectures similar to
those used in Ethereum optimistic rollups, Polkadot, BSC and so on, to be implemented
using ISC chains as a base protocol. The following elements are essential:

• Each validator comes with a security bond, an asset which is put as a collateral to
a third trusted party, usually a (staking) smart contract.

• Any other third party, called fisherman, can provide fraud proof, a cryptographic
proof that the committee of validators has produced a wrong update of the chain’s
state. The fisherman can be motivated to monitor the activity of a chain by a bounty
and will be discouraged from not being alert by periodic unexpected checks.

• Chain validators already have the valid chain’s state, and calculate the next valid
state, so they are prime candidates to act as fishermen. They are incentivized to
submit fraud proofs of invalid state transitions to collect the stake from other val-
idators and secure their own chain - this means that a chain is secure from malicious
state transitions as long as there is at least 1 honest validator in the committee of
validators.

• The submitted fraud proof will be validated by the staking contracts. This is possible
due to the determinism of VM and signatures. If the claim is valid and proves the
state update is invalid, the staking contract punishes the committee of validators by
taking its security bonds (also known as “slashing”).

This setup ensures game-theoretical security of the chain validation: the assumption is
such that no party will misbehave as long as the net gain from misbehaving (in this case,
stealing funds) is negative. Obviously, security of the chain depends how big the security
bonds are.

The description above is significantly generalized and omits details such as the exact
form of fraud proofs. Also, certain synchronicity assumptions must be made, for example
a time window for submitting proofs and the Dispute Time Delay (DTD).

The essential element of the permissionless setup is the trusted third party, a staking
smart contract, which keeps security bonds and handles the fraud proofs (also known
as dispute resolution). We may see the staking contract as a metaphor for the supreme
court. The presence of such “supreme court” common to all chains creates shared secu-
rity among chains that are validated by validators staked in the common staking contacts:
the top trust anchor will be the same for all chains. The setup with the “supreme court”
creates a basis for a permissionless market for chain validators. Any entity can
participate in the market with its stake and the chains will hire validators by paying them
validation rewards, for example through a fee mechanism and/or interest on the staked
capital.

In Ethereum rollups, the “supreme court” is a smart contract run on the Ethereum main
chain. The question is, where do the “supreme court” contracts run for the permissionless
setup of ISC chains?
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The approach of ISC to the permissionless setup is to implement all necessary “supreme
court” logic in smart contracts on a root chain, which is a singled-out ISC chain. The
root chain would be a shared source of trust and security for all ISC chains validated in
the permissionless setup. It will run all staking logic as well as open validator market
smart contracts.

The question then arises, what entities will validate the root chain itself?

In the IOTA 2.0 ledger, the validators of the root chain will be selected among so-called
high mana nodes. The high mana validators are the owners of L1 IOTA nodes, selected
in a decentralized manner on L1 by using access and consensus mana as weight factor.
The high mana validators which have the biggest influence and skin-in-the game in the
L1 ledger. Taken together, high mana validators will concentrate the dominating amount
of mana in the network and will be as trusted as the whole IOTA 2.0 ledger.

Validation of the root chain by the high mana nodes equals out the security assump-
tions of the IOTA Smart Contracts chains on L2 with the security assumptions of the
IOTA L1 ledger.

In the pre-Coordicide network, run, for example, by a distributed coordinator, the root
chain will be validated by the same entities that run the distributed coordinator. This
creates a shared source of trust for L1 and multiple L2 ledgers.

Note that the IOTA Foundation’s strategy is to get rid of the coordination of the network
in the public mainnet. At the same time, the configuration of the L1 ledger with the
distributed coordinator and the root chain as a system-wide source of trust and shared
security is a powerful platform for big corporate and public networks of pan-European and
global scale. So, the coordinated configuration of the IOTA L1 will most likely be kept as
a supported version and an option for huge corporate deployments even after getting rid
of coordinator in the public mainnet.

6 The IOTA Smart Contract chain

6.1 Smart contract chains

ISC is a multi-chain environment. We can run many parallel blockchains (chains) on top
of the IOTA ledger, on L2. Each chain has the following properties:

• It has its own ledger state which can be updated independently from states of
other chains, in parallel.

• The ledger state of the chain uses an account-based model of the ledger (contrary
to the UTXO model of the L1).

• Its state is committed (or anchored) in the specific IOTA UTXO ledger account
on L1 (see State. Anchoring the state).

• The chain is validated by its own set of validators, known as the committee of
validators. The validators reach consensus on the state update via a BTF consensus
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protocol (see Consensus). Then validators provide the proof of consensus to L1
ledger as part of the anchoring process;

• Each chain hosts multiple smart contracts. Within the boundaries of the chain,
they are fully composable via synchronous calls, just like smart contracts on any
blockchain. We call it synchronous composability (also known as atomic com-
posability).

• Each smart contract can transact (i.e. exchange assets) with other smart contracts
on other IOTA Smart Contracts chains in a trustless and feeless manner through the
anchoring mechanism on the L1 ledger. It makes smart contracts fully composable
cross-chain. We call it asynchronous composability.

Figure 2: Multiple chains with multiple smart contracts

6.2 Chain account and Chain ID.

For details on UTXOs and the L1 ledger, see Annex: Assumptions about L1 UTXO ledger

A chain account is an account on the UTXO ledger (L1) controlled by a chain address
also known as chain ID. It is a special kind of address, an alias address, which abstracts
the controlling entity (the state controller address) from the identity of the chain: the con-
trolling entity of the chain may change, while the chain ID stays the same transparently
for user of the ledger.

The chain account contains many UTXOs, including the state anchor (also known as
the alias output), an on-ledger backlog of requests and other L1 assets.

The chain ID is the unique identifier of the chain for its lifetime. It is assigned (or
minted) by the protocol upon creation of the first alias output in the origin transaction of
the chain and remains immutable throughout the lifetime of the alias output. The chain
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on the UTXO ledger is uniquely identified through its alias address. The protocol guar-
antees that the unique alias output with particular chain ID (alias address) is always
present in the L1 ledger state.

The ISC chain controls a collection of UTXOs in its account. All UTXOs on the chain’s
account belong to one of two groups:

On-chain assets are UTXOs that are tracked by the chain in its data state (see On-
chain accounts). These UTXOs represent L1 assets owned by the chain on behalf
of its smart contracts. The on-chain assets may be all types of UTXOs: extended
outputs, NFTs, foundries, alias outputs and, potentially, others. The collection of
on-chain assets is therefore committed in the the anchor (alias output type) in the
chain’s account itself. The immutable anchoring together with the data state makes
the on-chain assets a deterministic (objective) part of the chain’s account: every
validator node perceives the on-chain assets the same way.

Backlog of on-chain requests are UTXOs in the account that were not yet processed
by the chain. They are added to the chain’s account by asynchronous agents (also
known as the requesters) in parallel. It is the non-deterministic part of the chain’s
account, because validator nodes may have different perception of it each moment
of time. The chain is processing the UTXOs (also know as On-ledger requests)
in the backlog by consuming UTXOs and thus removing them from the backlog.
Processing the backlog is an atomic operation: removing the UTXO from the non-
deterministic backlog and adding the effects of its processing into the deterministic
data state.

See also Figure 5: "Balance sheet" on L1 and L2.

6.3 State. Anchoring the state

The state of the chain is deterministic, i.e. perceived equally by all validator nodes. It
consists of:

• On-chain assets on L1 (see above).

• a collection of arbitrary key/value pairs (known as the data state) on L2. The
data state which represents internal chain accounting as well as the use-case-specific
data stored in the chain by its smart contracts. The data state is stored in their
databases by all validator and access nodes of the chain (see Nodes).

By anchoring the state we mean the following:

• Accounting of all on-chain assets in the data state, thus tracking which on-chain
asset or balance belongs to which smart contract or L1 address.

• Placing the commitment to the data state and the state index into the alias
output, always contained by the chain’s account.

The commitment to the data is a value, such as a root of the Merkle tree of the
data state, which makes it impossible to modify the data state in the state without
changing the commitments. See Committing to the state.
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The state index (also known as block hight) is an incremental value which incre-
mented with each new state anchor. The consistency of incrementing of the state
index is enforced by the UTXO ledger on L1.

Anchoring guarantees an atomic relation between the data state (through commitment)
and the assets owned by smart contracts.

The alias output of the chain guarantees there’s always exactly one such output for
each chain on the UTXO ledger. We call it the state anchor and the containing trans-
action the anchor transaction of the chain.

With the anchoring mechanism, the UTXO ledger on L1:

• Guarantees global consensus on the state of the chain. There is no possibility to
fork the chain.

• Makes the state immutable and tamper-proof.

• Makes the state transitions controllable, atomic and consistent with the
asset balances.

• Makes the data state global and objective within the chain: the requirement for
quasi-Turing complete smart contracts.

The state anchor contains:

• The identity of the chain (the chain ID, an alias address).

• The address of the state controller (the address with the private key behind to
control the alias).

• A commitment to the data state (see Committing to the state).

• The state index (also known as block height), which is incremented with each next
state output, the state transition (see The state transitions).

• A consistent timestamp of the state.

The state commitment and the on-chain assets are owned by the chain’s account. The
anchor output and all assets controlled by the alias address can only be moved by pro-
viding the valid signature of the state controller, which itself is specified in the alias output.

For state controller signatures, ISC uses threshold signatures (BLS or based on Schnorr/ED25519).
It ensures that at least ⌊2N/3⌋ + 1 validator nodes have to provide valid signatures for
the anchor transaction to make it valid.

This way, the chain’s state and assets are controlled by the quorum of validators in
the committee of validators.

The committee of validators can be rotated (changed) by changing the state controller
address in the state anchor. Note that rotation won’t change the identity of the chain,
the chain’s account, controlled assets, data state and backlog of on-ledger requests. The
rotation of the state controller is completely transparent to smart contracts and the chain
as such.
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6.4 Committing to the state

The data state of the chain is a collection of key/value pairs. Each key and each value
are arbitrary byte arrays. The key/value pairs of the data state are used to implement all
kinds of on-chain concepts: from On-chain accounts to use case-specific data of the smart
contract state.

The ISC concept of the chain’s state differs a bit from the same concept in blockchains:
the chain’s state in ISC is a generic collection of key/value pair, essentially state variables
and its values. Unlike blockchains, the chain’s state structure does not reflect the history
of mutations, i.e. the way how the state was created. The history of mutations (blocks)
are kept in the database separately, for auditability and synchronizations reason, however
the state itself does not have a concept of block.

In its persistent form, the data state is stored in a key/value database outside of the
L1 UTXO ledger in the validator nodes of the chain. This means the data state of the
chain is within a known circle of nodes. This fact may be used in use cases that seek pri-
vacy for the chain data while using the public IOTA network for L1 as well as compliance
with European GDPR regulations.

By "commitment to the (data) state" we mean a cryptographical commitment to the
data in the state as a whole.

To provide consistent historical information for auditing and other purposes, the chain
keeps it in the state itself, namely in the blocklog partition of the state. The blocklog
contains commitments to all previous blocks and states, processed request and events.
Therefore, commitment to the data state is always a commitment to its history too.

The most common example of a commitment to the state is the root of the Merkle tree,
calculated from the data of the state. In Ethereum, state commitments are computed in
the form of Merkle Patricia trie. Merkle trees are not the only way of committing to the
state and not the most efficient one.

In the ISC chains, we follow a more efficient pattern of state commitments by using a
so-called verkle tree: a tree based on vector commitments made by the tree nodes to its
child nodes. The vector commitments are usually based on different cryptography than
the hash function used in the Merkle trees.

The commitments in the form of tree provide proofs of inclusion of data elements
(also known as proofs of existence), based on the path from the tree root to the data
element. Size of the proof of inclusion depends on the method of commitments and the
branching factor d of the tree (number of children). For hashing-based binary Merkle trees
branching factor is d = 2, for Patricia trie used in the Ethereum it is d = 16. The proof
of inclusion for the data element in Merkle trees is d × O(logdN) where N is size of the
data state (number of key/value pairs in it). This makes Merkle trees not practical12 for
larger branching factors d.

12A Theory of Ethereum State Size Management: https://hackmd.io/@vbuterin/state_size_
management
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By using other types of commitments in the verkle tree, we can make size of the proof of
inclusion O(logdN), i.e. d times smaller. It enables usage of trees with a large branching
factor, for example 256. That makes state proofs very fast, small and efficient. The most
promising commitment schemes for verkle trees are Kate (KZG) and Pedersen polynomial
commitment schemes.

Let’s say we have a state of the chain S. In parallel to the key/value storage of S, the ISC
nodes maintain verkle tree trie(S). The commitment to the state C(S) is the root of the
verkle tree. It is stored in the state anchor on L1 in order to make the state of the chain
S immutable to anybody but the mutations produced collectively by the validators of the
chain. Note that the state contains history of itself in the blocklog partition, therefore the
chain is commited to the history too.

The state of the chain is updated by applying a mutation Mi to the current state Si:
Si+1 = apply(Si,Mi). Mutation Mi is a state transition, calculated by the virtual ma-
chine from inputs and the previous state: Mi = VM(Si, inputs). The inputs are the
requests to be processed by the VM, while the smart contract programs are part of the
state Si.

The important requirement to the state commitment scheme is the ability to efficiently
update the verkle tree from the mutation: trie(Si+1) = updateTrie(trie(Si),Mi).

In ISC, the data state of the chain is stored in its entirety, as a current state (see also The
state transitions). To access a key/value pair in ISC you do not need to prove its inclusion
in a certain block by traversing through the Merkle tree, like in Ethereum and Bitcoin
blockchains. The blocks (which are mutations to the state) are only kept for enabling un-
synced nodes to catch up and for auditability purposes. So, a tree of state commitments
is not needed for the operation of the chain.

However, the state commitments are needed in the following use-cases:

• Committing to the state as a whole, sub-states and the auditable history in the
UTXO ledger state on L1.

• Proving inclusion (existence) of a key/value pair in a state of almost arbitrary size
in distributed long term storage solutions.

• Statelessness: ability to operate consistently on a fragment of the state and proofs
of inclusion of that fragment. This property is very important for fraud proofs and
shared security solutions.

• State pruning: ability to delete historically old data from the state without losing
the ability to prove inclusion of any pruned data element in the state. This is a
prerequisite for any hight TPS use case when databases with chain state quickly
become too large.

• Handling European GDPR requirements to “forget” certain data: data can be deleted
from the state without violating the consistency of the state.

• Snapshotting the state: storing commitments to the past states in the state itself.
This enables the validation of a past state with reference to the current state.
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6.5 The state transitions

The data state is updated by mutations of its key/value pairs. Each mutation is either
setting a value of the key or deleting the key with the value from the data state. Any
update to the data state can be reduced to an ordered sequence of mutations. The state
is updated (mutated) by applying the mutations in sequence to the current data state.

A set of mutations to the data state which is applied as a single unit we call a block:

nextDataState = apply(currentDataState, block)

The state transition in the chain occurs atomically together with the movement of

Figure 3: Chain on L1 and L2

the chain’s assets and the update of the state commitment of the new data state in the
transaction which consumes the previous state output (or ’previous state anchor’) and
produces the next state anchor.

At any moment in time, the data state of the chain is a result of applying the histor-
ical sequence of blocks, starting from the empty data state. Hence blockchain. The ISC
block does not contain block headers nor transactions, only mutations of key/value pairs.

In parallel, the history of the state is represented on the UTXO ledger on L1 as a se-
quence (or ’chain’) of state anchors, each controlling the chain’s assets in the chain’s L1
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account and the commitment to the data state. See figure Chain on L1 and L2.

Note that not all of the state anchors back in the past may be available: due to practical
reasons the older transactions on L1 may be pruned (deleted) and made unavailable. It
is guaranteed, however, that the tip of the chain of anchors UTXOs is always available in
the ledger state, it is globally unique and it can easily be located in the chain’s account
by the chain ID.

The blocks and state outputs that anchor the state are computed by the VM, which
is a deterministic processor or a “black box”. The VM is responsible for the consistency of
state transitions and the data state.

6.6 State synchronization and validation

Any party (a node in particular) with access to the chain of blocks and the UTXO ledger
on L1 can reconstruct the data state of the chain by sequentially applying blocks to the
origin state or starting from some valid snapshot of the state.

The node can validate the state by computing commitment to it and comparing it to
the state commitment on the state anchor on the UTXO ledger state in L1: state is valid
if value on the state anchor is equal to the computed commitment.

Each node keeps its own copy of the data state in the database and checking with the
state anchor guarantees that it is the only possible valid data state.

The process of keeping the copy of the state valid and up-to-date (i.e. the latest one)
we call state synchronization or syncing. The latest (the current) state is determined
by the unique UTXO of the state anchor.

The party can query the UTXO ledger at any time and retrieve the current state an-
chor of the chain. If the state index and state commitment contained in the state anchor
is equal to the state index and the state commitment of the current data state in the
database, it means the party has the up-to-date state in its database, i.e. it is synced.

If the state index on the data state stored in the database is less than the state index
of the state output, it means the node is behind, i.e. not synced. Note that from state
index the node knows how many blocks exactly it is behind the latest state.

The node can catch up and synchronize its state by the iterative process of querying
missing blocks from other nodes and applying them in sequence to its own data state in
the database. Each such step produces new data state a the node can calculate commit-
ment value to it. The process is repeated until the data state reaches a state index and
state commitment value equal to the commitment in the current state anchor. Note that:

• Older state anchors may not be available in the ledger (in other words, it is ’pruned’).
However, the process will always finish because the current state anchor is always
on the ledger state.

• The process may start from the origin state. This is not practical in many situations,
so we may want to start syncing from a snapshot of the data state. In this case,
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we will find out if the snapshot represents a valid past state by reaching the current
state (or not).

6.7 On-chain ledger

Each ISC chain implements its own ledger with its own validity constraints in its data
state. The deterministic logic of the The virtual machine (VM) is responsible for keeping
the on-chain ledger consistent. Chain ledger state transitions are computed by the VM
and nothing else.

6.7.1 Smart contracts

A smart contract is a program deployed on the on-chain ledger. By ’deploying’ we mean
the smart contract has a binary code stored in the data state of the chain, which makes it
immutable. The binary code is interpreted by the deterministic VM. It makes each smart
contract a deterministic extension of the VM.

Each smart contract (or ’program’) has access to a partition of the chain ledger. Only a
particular smart contract has read/write access to its partition. The entire data state of
the chain is split into non-intersecting partitions or sub-states, each controlled by a smart
contract.

Some partitions, known as ’system partitions’ are built into each chain . Each system
partition is controlled by the corresponding core smart contract. The Core contracts
are hardcoded into the VM and are deployed automatically. They are responsible for the
on-chain infrastructure used by user-defined smart contracts, such as a registry of smart
contracts, on-ledger accounts or chain configuration data. Core smart contracts may be
seen as a part of the VM itself.

6.7.2 On-chain accounts

The chain ledger implements its own ledger of accounts, the on-chain accounts. The ISC
chain uses the account-based model of the ledger (unlike the UTXO model used by L1).
Accounts are global for smart contracts within the chain. Smart contracts can assume a
shared and objective global state of accounts.

The ledger of accounts is implemented as a partition of the data state of the chain,
controlled by a core smart contract called accounts contract. Each on-chain account
contains:

• Balances of iotas and other digital assets (such as foundries or NFTs) native to L1.

• The account owner, who is the controlling entity of the account. Only the owner
can move assets from the on-chain account. The account holds the ID of the owner
as accountID.

The accountID is either an address on the L1 ledger (with the private/public key pair
behind it) or an ID of a smart contract, on the same as another ISC chain. The accounts
contract provides controlled and secure access to funds by its owners. The sender of the
request to access the account is always securely identified through the signature (see Re-
questing smart contracts).
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Figure 4: On-chain accounts

The consistency between L1 on-chain assets controlled by the chain and on-chain ac-

Figure 5: "Balance sheet" on L1 and L2

counts on L2 chain is guaranteed by:

• atomic updates of the data state and L1 account via state anchoring mechanism;

• the determinism of the VM in general and the accounts core smart contract in
particular.

• the consensus of validators.

The VM logic guarantees the main invariant of the on-chain account ledger: any state
transition keeps the sum of assets in the on-chain accounts equal to the assets controlled
by the on-chain assets on L1. The above is equivalent to the equal assets and liabilities
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on the balance sheet in conventional double-entry accounting: on-chain accounts may be
treated as balance sheet liability side and on-chain assets on L1 are balance sheet asset side.

The backlog has semantics of "not yet/to be processed inputs/assets". See Requesting
smart contracts.

7 Nodes

7.1 Validator nodes. Access nodes

Each chain has a subnet of ISC nodes. We call the nodes in the subnet access nodes.
By calling it this way we want to say that (a) each access node holds a valid state in
its database and (b) it (optionally) provides access to smart contracts for external callers
which want to query the state of the chain via view calls and want to send off-ledger
requests directly to the access node.

Each access node is connected to the IOTA L1 node in order to receive updates on the
chain’s account. See also Incentives to validate L1.

The peers in the subnet (in other words, other access nodes) are connected to each other
through statically assigned trust relationships. This means that each access node has its
neighbors in the subnet with known identities. In general, not all access nodes are neigh-
bors of all others, so the topology of the subnet may not be homogenous.

Some access nodes in the chain’s subnet are validator nodes. The validator nodes form
the committee of validators, which is an ordered set of nodes. All validator nodes on
the committee are trusted neighbors of each other.

Validator nodes may or may not provide access via API to the outside world. It is common
for validator nodes to be exposed inside the subnet but not to the outside world: the other
access nodes may shield them to protect from external attacks.

The committee of validators collectively runs the consensus on inputs and outputs of
the VM calculations, produces the state update and the anchor transaction (see Consen-
sus).

Other access nodes are listening to new state anchors submitted by the committee of
validators to the IOTA L1. Whenever a new state anchor is detected, the access node
synchronizes its chain’s state with other nodes by requesting blocks from other nodes and
validating the state against the new state anchor.

The validator nodes usually each is having access to the L1 via own IOTA node. This
makes access to the Tangle on L1 as distributed as the chain’s validators themselves: no
single point of trust for access to the L1 ledger.

Each validator node of a chain has a private key share, known only to it. With its
private key share, the validator node signs the transaction. The consensus process collects
signatures and aggregates them into the final valid threshold signature without needing to
access the master secret, not known to anybody. It is enough to have a part of signatures
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T to produce a valid final signature. Usually, threshold parameter T = ⌊2N/3⌋+1 where
N is the size of the committee of validators.

The private key shares are distributed among validator nodes during the secure Distributed
Key Generation (DKG) procedure (in the first versions of ISC we are using Rabin-Genaro
algorithms13. With the rapid development of the field, new interesting alternatives are
coming).

Each collection of keys represents a particular committee of validators identified through
the master public key and the state controller address. The state controller address is
contained in the alias output of the state anchor transaction. That gives control over
the state and the funds of the chain to the quorum of the validator nodes: the L1 ledger
requires proof of consensus among the quorum majority of validators on the state transi-
tion; otherwise a state transition is not possible. The threshold signature is the proof of
consensus.

The committee of validators can be changed (rotated) by replacing the state controller
address in the state anchor output. This way the committee of validators can be modi-
fied by adding, removing or replacing nodes without changing the chains’ identity and is
completely transparent to the smart contract and its requestors.

7.2 Consensus

The state update of the smart contract chain is a result of a consensus procedure among its
validator nodes. The consensus used in ISC is leaderless and asynchronous. We describe
it here in general terms:

• Upon the start of the new cycle (which is known from L1 as a shared source of truth
for nodes), each validator node queries its mempool and produces a batch of requests,
known as the batch proposal. It is very likely that batch proposals will be different
for each validator node, because mempools are asynchronously filled with on-ledger
and off-ledger requests. Each validator node puts its subjective timestamp and
signature by its own private key share of the current state hash into the batch
proposal.

• Validator nodes run a distributed consensus algorithm to reach a consensus agree-
ment on the batch of requests based on inputs, the batch proposals. ISC uses the
HoneyBadger Asynchronous Common Set (ACS) algorithm for this: a lead-
erless asynchronous Byzantine Fault Tolerant consensus protocol. The absence of
time assumptions (due to asynchronicity) and absence of leaders makes consensus
resistant to certain attacks.

• The output of the ACS is used to deterministically calculate a list of requests the
same in each validator node, the timestamp and the unpredictable randomness.
The timestamp is calculated deterministically from the set of proposed timestamps
and adjusted to the time constraints of the state. The randomness is taken from the
aggregated threshold signature of partial signatures provided as part of the input to
the ACS consensus.

13Secure Distributed Key Generation for Discrete-Log Based Cryptosystems: https://link.springer.com/
content/pdf/10.1007/s00145-006-0347-3.pdf
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• The batch of requests is ordered deterministically based on the unpredictable ran-
domness generated by the ACS consensus. This way, the order of requests in the
final batch of requests is unpredictable for any validator node and therefore cannot
be influenced by less than a quorum of validator nodes. See also MEV prevention.

• The consensus guarantees exactly the same batch of requests, timestamps and un-
predictable randomness in each validator node. All requests in the final batch can
be processed by the same quorum of validator nodes, i.e. each validator node has
enough information to calculate the result by itself, independently from others.

• If consensus on the batch of requests is not empty, it is used as an input for the VM.
Otherwise, the round is restarted with a new batch proposal.

• Deterministic VM produces as the output: (a) mutations for the state (the block)
and (b) a state anchor transaction essence (not signed yet). All non-faulty nodes
produce exactly the same output, the only possible valid result. Different results
mean the Byzantine fault, which is a misbehavior.

• Each node signs the transaction it calculated with its own private key share and
disseminates the partial signature to its validator peers (only signature, not the
transaction). Note that signed faulty result would be proof of misbehaviour traceable
to the specific faulty node.

• Each node aggregates partial signatures received from peers into the final threshold
signature and thus each non-faulty node produces identical final transactions ready
to be posted to the L1 ledger.

• All nodes posts final transaction in a random but deterministic order to the L1 node.
In case several nodes post the same transaction to L1, the L1 consensus takes care
of it and ensures the consistency of the UTXO ledger. In the ordinary course of
operations, this is a rare event.

After the state anchor transaction is confirmed on the L1 ledger, nodes receive notifications
independently from their corresponding L1 node. After the node receives a confirmed an-
chor transaction it commits the updated state and the corresponding block to the database.

The access nodes which are not participating in the consensus will also receive the new
anchor transaction from their L1 node. The access nodes will query the missing block
from other nodes, then will validate and sync its state to the latest one.

7.3 MEV prevention

The MEV stands for Miner Extractable Value14. MEV becomes possible when validators
(miners) of the blockchain have power to determine flow of transactions in the block. By
analizing the incoming flow of buy/sell transactions, the miner may take advantage of
its knowledge and insert own transactions to earn a profit. An example may be a front-
running15. In regulated stock markets the front-running and similar tactics are considered
illegal and unethical.

14Miner Extractable Value (MEV) https://ethereum.org/en/developers/docs/mev/
15Investopedia. Front-Running https://www.investopedia.com/terms/f/frontrunning.asp
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MEV is very difficult to prevent in blockhains running proof-of-work consensus proto-
cols. The reason is that each miner proposes its own block and therefore transactions in
it. Other miners just take the block proposed by the winner of proof-of work race and
only runs VM on proposed transactions to verify it. This way miners run consensus on
the next (future) state of the chain.

ISC, in contrast, runs among validators consensus on the inputs to the VM, the batch
of requests, i.e. consensus on the present state. After consensus on inputs is reached,
each validator node runs VM to calculate te block for itself (it is always valid due to the
determinism of VM).

The ISC consensus randomizes the order of inputs to VM with a unpredictable randomess
generated by the consensus round itself. This makes content of the batch (including order)
unpredictable for validators unless ⌊2N/3⌋+ 1 collude.

So, ISC consensus prevents MEV by making validators unable to determine
content of the block.

8 The virtual machine

The virtual machine (the VM) is a deterministic part of the ISC chain responsible for
consistent state transitions of the on-chain ledger. The VM has a hardcoded part that
includes core smart contracts and built-in interpreters such as WebAssembly (Wasm) in-
terpreter or EVM. Smart contracts are extensions of the VM and the deterministic state
transition function.

The VM of ISC follows the model of Ethereum VM (EVM): smart contracts are inter-
pretable binaries which can be invoked on-chain by the proposed transaction (this is called
’a request’) or from another smart contract. It also can be invoked to access the state
of the chain in read-only mode (or ’views’). ISC also makes an effort to abstract core
functions of the VM from the specifics of its implementations. See also Invoking smart
contracts. Composability.

Upon deployment of the smart contract, its binary code is stored in the data state of
the chain. Smart contracts are loaded from the data state and interpreted by built-in
interpreters of the VM.

8.1 VM abstraction

Through VM abstraction, the VM can support several types of interpreters of smart con-
tract programs at the same time on the same chain: for example, different interpreters of
WebAssembly binaries and different configurations of EVM. The core of the chain and the
VM is agnostic about the exact type of the binary interpreter of smart contract programs.
The VM abstraction includes:

• The abstraction of VM interpreter. The main targets are WebAssembly and EVM.

• The abstraction of the Processor, a smart contract program loaded into the inter-
preter (linked with Sandbox ) and ready for running.
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• The Sandbox interface: an abstract interface provided by the VM for its plugin,
which is the smart contract. Sandbox provides deterministic access by the smart
contract to the resources of the chain: the data state, assets/accounts, calling other
smart contracts, posting cross-chain requests, utility functions for heavy cryptogra-
phy and similar.

• SandboxView interface, for read-only access to the chain’s state from the read-only
methods of smart contracts, which are the view entry points.

8.2 Core contracts

Each chain can have many smart contracts. Some of them, known as the core contracts,
have special functions in the VM and are hardcoded. Core contracts are deployed au-
tomatically as a part of the deployment process of the chain and comply with the same
interfaces as all other smart contracts. That makes core contracts invocable by external
users and smart contracts just like any other. See also Invoking smart contracts. Com-
posability

Each chain contains six core smart contracts, which are deployed automatically along
with the chain itself. Each core contract controls its own partition with chain level data
which is maintained by the VM:

• root contract: deployment of new smart contracts and the registry of contracts.

• accounts contract: registry of on-chain accounts, ownership, moving assets between
on-chain accounts.

• blob contract: registry of big binary data objects, such as Wasm binaries, associated
data schemas, program sources.

• blocklog contract: keeps track of blocks, receipts of requests and event log. It is the
auditable history of the chain.

• governance contract: configuration of the chain, such as admin rights, fee policy,
committee rotation, contract deployment policy.

• _default contract: always invoked when the target contract is not found.

8.3 Gas and fees

8.3.1 Gas considerations

The IOTA DLT is feeless at its core, as are the smart contracts in ISC. However, for quasi-
Turing complete computations we need the concept of gas to restrict abuse of the processor
and storage resources, to prevent runaway programs and the generating of garbage in the
state. The concept of gas assumes the cost in gas units to be proportional to the amount
of resources consumed.

The purpose of gas is twofold:

• To put a real price on resources. It translates into iotas per gas rate. The
requester pays iotas for the resources of the chain.
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• To put a cap on an invocation of the smart contract, the gas budget. Smart
Contract programs burn gas when running. Exceeding the budget means cancelling
the processing.

Unlike EVM, ISC can have different program interpreters and different gas metering on
the same chain. It makes it difficult to calibrate gas costs objectively.

Therefore, in ISC the gas metering is use case-specific and depends on gas and fee policies
set by the governance of the chain. Examples of possible gas policies include:

• No fees, no gas budgets (it may be acceptable in private setups but easily at-
tackable in public ones).

• No fees, fixed gas budget per contract (for corporate and private deployments).

• Fixed fees on chain level and per contract, fixed gas budget per contract (mostly
for corporate deployments).

• Gas based fees, iota per gas price at the chain level, iota-based gas budgets (for
public deployments).

Currently, we see gas price in iotas mostly fixed by the governance decision. A gas market
is possible and might be a future option; however, volatility in iotas/gas prices in general
is to be avoided.

Note that the purpose of the multi-chain environment is to prevent congestion due to
the limited throughput of one chain and ever-growing demand. Spawning another parallel
chain to increase the total throughput to prevent congestion is always an option in ISC.

8.3.2 Fees

Apart from congestion control through gas as noted above, fees have the function of mo-
tivating validators and chain owners (governors) to run and validate the chain.

Usually, fees are paid in iotas or in any IOTA native token. The choice is up to the
governance decision. The charged fee (if any) is split into two parts: the validator’s fee
and the owner’s fee. The splitting policy is set by the governance of the chain.

The validator’s fee goes to the account of validators in the committee of validators, usually
in round-robin or deterministic pseudo-random fashion. The validator fees are an incentive
for the validators to validate the chain.

The owner’s fee goes to the so-called common account on the chain, controlled by
the governor of the chain (see below).

9 Governance of the chain

ISC is a multi-chain environment where smart contracts on different chains can transact
without any additional trust. At the same time, each ISC chain is a separate distributed
ledger with specific parameters and configurations.

Examples of use-case specific chain parameters and configuration include:
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• The governor itself.

• Parameters for rotation of the committee of validators.

• Configuration of the subnetwork of trusted access nodes of the chain.

• Fee policy. Gas rates. It defines if and how the fee is calculated, charged, distributed,
in which kind of tokens, fallback mechanisms, etc.

• Permissions (if restricted) to deploy smart contracts, to use blob space, to post
requests, to set all kind of limits, etc.

• Numerous technical parameters and limits for consensus and smart contract execu-
tion.

The entity authorized to change the configuration of the chain is called the governor or
the owner. The core smart contracts check authorization for restricted operations.

The governor can only do what is prescribed by the core smart contract; it cannot do
anything to change the deterministic flow of chain updates on the chain. For example, the
governor does not do any transaction validation; that is the job of the validator nodes.
Similarly, the validator nodes are not involved into any decisions on the chain’s parameters.

The governor of the chain is represented by one of two options:

• An ordinary IOTA address with a public/private key pair behind it. Usually this
is a centralized model of governance where one person or organization determines
parameters of the chain.

• A smart contract on the same or another chain that performs governance opera-
tions on the chain on behalf of a distributed governing body – for example, a DAO.
This is a decentralized model of governance. The governing smart contract may
implement its own governing logic: for example, it may require secure voting by the
governing body on certain decisions. The scope of governance models implemented
in the DAO smart contract is unlimited.

Examples of functions of the governance contract of the chain include:

• Transferring the ownership (governance rights) to another entity through grant/claim
protocol.

• Rotating validators of the chain to another set of validators (committee) represented
by the address (this is a multi-step process).

• Setting fee/gas policy. A fee policy also includes how fees are distributed among
validators and the owner of the chain.

One special account on the chain, the common account, is always controlled by the gover-
nor, whoever it is. Any assets/tokens sent to core contracts, intentionally or by mistake,
end up in the common account and can be moved only by the chain’s governor/owner.
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10 Invoking smart contracts. Composability

There are two general ways of invoking the smart contract:

Calling a contract is a synchronous invocation of the program.

Requesting a contract is an asynchronous invocation of the program.

The two methods have different semantics and they are used in different environments.
When used by smart contracts to invoke other smart contracts, these two methods repre-
sent two different ways of composability of smart contracts:

• The calling offers a synchronous composability(also known as atomic compos-
ability) of smart contracts on the same ISC chain.

• The requesting offers an asynchronous composability of smart contracts cross-
chain, i.e. between smart contracts on different chains.

10.1 Calling smart contracts

In the blockchain, smart contracts interact by calling each other, just like functions in the
program. This is the main way of interoperability between smart contracts on blockhains
like Ethereum. This way, smart contracts on the same chain become atomically com-
posable. The atomicity points to the fact that all smart contracts access the same global
state in the context of one block and modify it in a synchronous manner; therefore, either
all updates of all smart contracts are included in the ledger with the block, or none of
them are. For example, if a contract calls an ERC-20 contract and then a Decentralized
Exchange (DEX) contract, and the DEX calls the oracle contract, all in the same block,
then they are all in the same state.

Synchronous composability is an important property of blockchain smart contract
ecosystems, such as Ethereum. ISC fully supports this type of composability inside each
smart contract chain. This type of composability has limited scalability due to the global
objective state assumption.

A view call is a synchronous invocation of a smart contract from off-chain by calling
the read-only (view) entry points. The smart contract program is run in the context of
the current state of the chain and the result is returned to the caller. The view calls are
used for example by the web server to display the state of the smart contract on the web
page.

10.2 Requesting smart contracts

A request is a way to invoke a smart contact function from the environment which is
outside the chain. Requests are sent (or ’posted’) by users from their wallets or by other
smart contracts on other chains. Each request bears a signature by the private key of the
sender and therefore the sender of the request is securely identified. The request ’wraps’
a call to a smart contract.

The flow of requests to the smart contract does not have a deterministic order. The
requests are asynchronous by their nature. After the request is sent/posted by a wallet
user or by a smart contract, it reaches the mempools of the validator nodes of the target
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chain. It is then picked by the distributed consensus process among validator nodes, and
the smart contract program is called (see above) with the call data wrapped in the request
on each validator node with the same state as an input. The result is settled as a state
update of the chain (and the smart contract) in the new block on L2 and the anchor
transaction on L1.

The request to the smart contract contains the following:

• Sender ID (sender address).

• Target chain (chainID, an alias address).

• Target smart contract ID in the chain.

• Target entry point ID in the contract.

• Attached assets: iotas and other native tokens.

• Call parameters: a collection of key/value pairs.

The on-ledger requests also may contain UTXO options: timelock deadline, expiry dead-
line, return amount and others (see Annex: Assumptions about L1 UTXO ledger).

There are two ways a smart contract can be requested:

• In the form of a UTXO transaction on the L1 UTXO ledger: this is the on-ledger
request.

• In the form of signed API call data sent directly to the access node of the chain:
this is the off-ledger request.

10.2.1 On-ledger requests

An on-ledger request is a call to the smart contract wrapped into the UTXO. It means,
the on-ledger request is a transaction on L1. The target address of the UTXO is treated
as an ID of the target chain.

All UTXOs in the chain’s account that are not recognized as an on-chain asset are treated
as on-ledger requests. They make up a backlog of on-ledger requests to be processed
(see Chain account and Chain ID).

The chain, a L2 entity, takes unprocessed requests from the backlog, processes them and
removes them from the backlog.

The on-ledger requests are used:

• To send (deposit) assets from user wallets (addresses) to smart contracts on
chains. The wallet creates a transaction with the output which has the target chain
ID as target address and other call data is wrapped in the metadata of the output.
The output representing the request appears upon confirmation in the backlog of
the target chain and is processed.

• For cross-chain transactions between smart contracts on different chains. The
smart contract posts the request to another contract on another chain by including
output with wrapped call data into the anchor transaction of the state update.
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The operations of submitting a request to the backlog of the target chain and removing
it from there are atomic operations. In case of cross-chain requests the two events,
(a) state transition of the sender chain and (b) the appearance of the sent request in the
target backlog, is an atomic unit.

10.2.2 Asynchronous composability

The on-ledger requests provide a basis for the trustless asynchronous composability of
smart contracts on different chains via guaranteed and trustless delivery of assets
and data enforced by the UTXO ledger on L1.

It usually works with the expiry time option in the UTXO (see also Annex: Assump-
tions about L1 UTXO ledger). The sender is guaranteed that once the request is sent to
the target chain, it will be processed by the target smart contract or otherwise the assets
(the output in its entirety) will come back untouched. So, L1 guarantees consistency even
with asynchronous requests without any additional trust in between chains: there is no
need for relays and cross-chain bridges.

Due to the properties described above, by using common standards of the request metadata
(which may also be enforced by the UTXO ledger), smart contracts become composable be-
tween different chains, even without synchronicity assumptions. We call it asynchronous
composability: the kind of composability between smart contracts which does not cre-
ate scalability bottlenecks.

For example, one chain can wrap its ERC-20 or similar smart contract asset into the
cross-chain request and send it to another chain to sell it on the decentralized exchange
(DEX). The only trust involved in this transaction is the trust to the smart contract chain
running the DEX; however, the cross-chain communication is happening on the same
ledger, therefore there is no need for additional assumptions about trust in between. The
two chains run their smart contracts independently from each other, i.e. in parallel. The
wrapped asset is always traceable back to the originator, the ERC-20 contract and the
chain.

10.2.3 Off-ledger requests

The off-ledger requests are sent by users from their wallets directly to the access nodes
of the chain. It is an API call, not a transaction on L1. They can not be sent by smart
contracts to other smart contracts (smart contracts are agnostic about nodes).

The off-ledger requesting is much faster and much less costly than requesting on-ledger (for
example it does not require dust deposit). The off-ledger requesting makes high through-
put (many hundreds of TPS on one chain) a norm.

Off-ledger requests are delivered to the mempools of validator nodes directly through a
dissemination mechanism in the chain’s subnet. The off-ledger requests bypass the UTXO
ledger, so its off-ledger throughput is limited only by the smart contract chain itself, not
by L1.

The off-ledger requests are functionally equivalent to submitting a transaction to an
Ethereum node.
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The off-ledger request contains the same call data as the on-ledger request, except for
UTXO-specific options (e.g. timelock). It always has the signature of the sender and an
account-specific incremental nonce as part of the replay prevenion.

The signature securely identifies the sender. The VM checks if the sender has an ac-
count on-chain with enough balance for fees. If the account does not exist or the balances
are not enough for fees, the processing is canceled. The asset balances specified in the
request refer to the assets in the sender’s on-ledger account. After these checks pass, the
off-ledger requests are functionally equivalent and have the same security properties as
on-ledger requests.

The on-ledger requests cannot be replayed; this is guaranteed by the uniqueness of the
transaction hash. The off-ledger requests, however, requires a special mechanism to pre-
vent replay, i.e. repeating the same signed request by the attacker.

In order to prevent a replay of off-ledger requests, the VM checks the receipt of
the request by the ID on the data state (blocklog) to see if it wasn’t already processed
in the past. Under the assumption that we have all request IDs of the past and the IDs
are unique (never repeats), it is enough to prevent replay. However, due to practical re-
quirements of keeping the database at a reasonable size old request receipts are pruned
from time to time in the state. That makes it impossible to determine if the request was
already processed in the distant past or not.

To prevent replaying requests from far in the past, the VM checks if the nonce is not
too old for the account. The user is required to send requests by incrementing nonces of
their requests one by one. The nonce is a part of the request’s hash (ID). The overall
replay protection scheme is designed to circumvent the problem of limited historical mem-
ory of already processed requests and the absence of deterministic order among nonces
in the batch of requests processed in the block. For reasons of space, we will not go into
detail here.

10.3 Tokenization. Bank and cash metaphor

The design of the multi-chain system of ISC includes the concept of advanced tok-
enization on L1 and L2, also known as the tokenization framework (see Annex:
Assumptions about L1 UTXO ledger).

The smart contracts themselves already have powerful tokenization features via contracts
equivalent to ERC-20 and similar. In ISC, this is known as L2 tokenization. In addition,
smart contracts on ISC chains can own and manipulate L1 assets such as iotas, native
tokens, NFTs and so on.

The native tokens and special UTXO types, like foundries, make tokenization on L1 pos-
sible.

The concept of advanced tokenization integrates both L1 and L2 into one framework.
We also use the bank and cash metaphor when reasoning about it.
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The “bank” would be a smart contract on L2, with its own system of accounts equiv-
alent to ERC-20, for example. These on-chain accounts are IOUs for its users, just like in
real banks.

The “cash” would be native tokens on L1, which the “bank” mints for its clients by de-
stroying corresponding IOUs on the chain. It locks the corresponding L2 tokens (IOUs)
in the smart contract (for example, ERC-20) and hands over the newly minted L1 token
to the user´s L1 address. So the user (the address) will stop being able to access those
ERC-20 funds on the chain. Instead, the user will own a native L1 token in the wallet
and will be able to transact it on L1 with others, just like paying in cash.

The IOTA UTXO ledger supports this bank and cash metaphor by the function of minting
of native tokens by Foundry outputs out of thin air. The foundry output is unique on
the ledger; it has an immutable ID and enforces a minting schema, which is immutably
linked to the Foundry when it is created.

Once minted, the new supply of native tokens is given the token ID and is therefore
always traceable to the specific foundry output. The UTXO ledger enforces consistency
of the supply, such as the circulating number of tokens, with the immutable prescriptions
of the foundry. Native assets can be transferred by any UTXO. This way, native assets
are first-class citizens in the IOTA ledger. They can be owned and transferred using the
usual mechanisms by wallets and smart contracts. They also bear the metadata of their
foundry, so they can be interpreted in any way in the smart contracts.

The concept of token wrapping is a way to interpret native assets. Let’s imagine a
smart contract similar to ERC-20 on the smart contract chain. It is a common tokeniza-
tion pattern – for example, that of Ethereum.

On the ISC chain, such a contract will have a foundry output owned and controlled by the
ERC-20 contract, with the supply schema that bears the identity of the chain and smart
contract itself. Upon request, the smart contract will mint new token(s) and will lock
respective tokens (essentially destroying IOU rights) owned by the requestor on the smart
contract. It means that L1 now has one new token with the identity of the chain and the
ERC-20 contract. The smart contract will keep the tokens locked until the minted token
is returned from L1. Otherwise, the newly minted native asset freely circulates among
addresses on the UTXO ledger without taking into account the locked tokens in the smart
contract on the specific chain.

The advanced tokenization features provide a medium for rich interoperability between
smart contracts of different chains/ledgers. The wrapping can be given all kinds of
semantics, not only coins and tokens. For example, electricity sensor readings can be
tokenized into tradable assets with traceable proofs of origin.
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11 Annex: Assumptions about L1 UTXO ledger

ISC comes with significant extensions of the UTXO ledger, known as the UTXO types16.

It must be noted that, as a protocol, ISC, as a protocol, only makes assumptions about
the structure and function of the ledger on L1. It does not make assumptions about the
consensus protocol on L1.

Here we informally describe the model of the UTXO ledger on L1 which provides support
for ISC chains and advanced tokenization features.

11.1 Introduction

The ledger state consists of Unspent TransaXtion Outputs (UTXOs): S = {U1, U2, ..., UN}.
Each output has an ID and is unique on the ledger. Each output has the output type
and contains output data (metadata). The balances of assets and target address to where
those assets are sent by the output, are examples of an output data.

The UTXO transaction is a collection of inputs, outputs and unlock data: Tx = (IN,OUT,Unlock).
Here:

• IN = IN(Tx) = {I1, ..., IN} is a list of references to consumed (or ’spent’) UTXOs.
We say those outputs are consumed by the transaction.

• OUT = OUT (Tx) = {U1, ..., UM} is a list of new UTXOs produced by the transac-
tion.

• Unlock is a data which unlocks the inputs, usually by some kind of cryptographic
proof of authorisation to consume/spend assets on the outputs listed in IN(Tx). In
most common case Unlock is the digital signature(s) of inputs and outputs, verifiable
with addresses of inputs.

The ledger is a collection of UTXO transactions: L = {Tx1, ...., TxK}. The ledger state
S(L) consists of the UTXOs which are not consumed by any transaction on the ledger,
hence the term ’unspent transaction outputs’.

The output type defines specific ledger constraints which the output brings to the
ledger when its containing transaction is added to the ledger. By constraints(S,U) = true
we denote the fact that all constraints imposed by the output U (depending on its output
type) are consistent with the ledger.

By definition the ledger state S(L) is consistent i.e. consistent(S(L)) = true only
if constraints(S,U) = true for all UTXOs in the ledger state: U ∈ S(L).

The ledger constraints are enforced by transaction validation rules. One may see out-
put types as hardcoded validation scripts.

The ledger is an append-only structure: this means that we can only add transactions
16RFC #38: Output Types for Tokenization and Smart Contracts: https://

github.com/lzpap/protocol-rfcs/blob/master/text/0038-output-types-for-tokenization-and-sc/
0038-output-types-for-tokenization-and-sc.md
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to it. Each transaction is therefore an atomic update of the ledger state. Let us say that
we have ledger L and the ledger state is consistent i.e. consistent(S(L)) = true. By
adding the transaction to the ledger we modify the ledger state and the state transition
occurs: Lprev ∪ {Tx} = Lnext. This is only valid if the transaction Tx satisfies all the
validity conditions:

• Tx is syntactically valid.

• Inputs IN(Tx) references existing UTXOs on the ledger state S(Lprev), i.e. UTXOs
which are not consumed by any transaction already existing on the ledger.

• Unlock(Tx) is a valid unlock, i.e. signatures are valid.

• State transition preserves consistency of the ledger state: constraints(S(Lnext)) =
true and this fact can be determined by only using context of the transaction Tx,
i.e. its inputs, outputs and unlock blocks.

The important property of the UTXO ledger is that validity of the state update, a trans-
action, can be determined by the transaction itself, without access to the global state of
the ledger.

The above implies that each output can be consumed by at most one transaction, other-
wise the two transactions would make a double spend. Ledger consistency rules do not
allow double spends and the ledger does not have double spends.

The rules above also make UTXO ledger partially ordered structure: by the very way
how it is constructed it cannot contain cycles. The UTXO ledger starts at the genesis,
the transaction and outputs, which is the ultimate predecessor of any transaction of the
UTXO ledger.

The ledger at genesis L0 is consistent by assumption. The consistency of each state
transition Li → Li+1 guarantees consistency of each ledger state. We can talk about a
ledger invariant I(L) = const which is preserved by each transaction (transition of the
ledger state). In the genesis state the invariant is defined by the genesis transaction:
I(originLedger) = const. Later, when updating the ledger by adding a new transaction,
all conditions (constraints) of the ledger invariant remain satisfied. For example, among
other things, the IOTA ledger invariant maintains the constant supply of IOTA tokens
defined in genesis: 2, 779, 530, 283, 277, 761.

11.2 Scalability of the UTXO ledger

An important property of the UTXO ledger is that the structure of it is parallelizable
and therefore scalable. Each transaction, the ledger state update, only consumes a fixed
collection of UTXOs, i.e. it only depends on the fragment of the overall ledger state.
Two transactions Tx1 and Tx2 can both be added to the ledger only if they do not have
common inputs, i.e. IN(Tx1) ∩ IN(Tx2) = ∅.

It is easy to check if a transaction is not a double spend. Also, independent transac-
tions can be added (written) to the ledger in parallel because they won’t produce
conflicts (double spends). This property makes parallel ledger updates possible.
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11.3 Ledger, ledger state and pruning

We distinguish two things: UTXO ledger L itself and UTXO ledger state S(L). The
main purpose of the ledger is to keep the consistency of the ledger state. The
ledger itself, the history of transactions, is not critical for the operation of the ledger;
however, it is necessary for auditability purposes, as a history of transactions which led to
the current ledger state, starting from genesis.

Once an output is spent by a transaction it is no longer present in the ledger state and
can be deleted (or ’pruned’). The same is true for transactions: transactions are atomic
groups of outputs that maintain links between inputs and outputs. So, transactions are
only needed for the atomicity of the ledger state update; after a transaction is added to
the ledger, it is only needed for auditability purposes, i.e. to prove the ledger state tran-
sition is valid. Otherwise, transactions can be forgotten (i.e.deleted), even if not all their
outputs are spent.

In conclusion, the ledger state is always available, while the whole ledger is not.

11.4 UTXO ledger accounts

An account is a subset of the ledger state. It is a collection of UTXOs that are con-
trolled by some entity. Usually the entity controls the account via a private/public key
pair. The account is identified in the ledger by its address. To prove its right to control
the account, the entity provides a signature through the private key and the protocol rules
check if the signature corresponds to the address.

In an account-based ledger such as Ethereum, an account is essentially a balance of a
token and data: this is known as the account state. The account state can be modified
(or controlled) by the owner of the address (i.e. the private key). In the account-based
ledger the account is global and always has an objective state. If the owner of the account
is a smart contract, it always receives the same account state as an input for its program,
no matter on which node the program is executed. For the smart contract, the state is
deterministic in the context of a specific block.

In contrast, an account in the UTXO ledger consists of UTXOs (unspent outputs) which
have a particular address as its target address. Parallel writing to the ledger also means
parallel writing to the account state. So, in the UTXO ledger the state of the account
is not objective: different nodes may see the overall collection of UTXOs in the account
slightly differently (unless they put them into blocks, like in Bitcoin or Cardano). So,
programs which consume the state of the same UTXO account on different nodes may
have different perceptions of it and provide different inputs for the program.

The above means smart contracts which process the state of the account first have to
deal with the non-deterministic nature of the UTXO account.

11.5 UTXO extensions

In the IOTA UTXO ledger the output type determines constraints that the output brings
to the ledger. One may see the output type as a hardcoded configurable constraint
validation script, or state machine, which enforces certain constraints in the ledger
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by taking transaction context and the UTXO as input and producing true or false as a
result of checking the constraints. The UTXO (and the transaction) is valid only if the
result is true, i.e. does not allow a ledger state with invalid constraints.

The simplest type of UTXO model only assumes asset balances to be present in the
output. The constraint of such an output is preserving token balances in inputs and out-
puts; for example, to preserve a constant number of tokens in the ledger.

We are extending the IOTA UTXO ledger by adding special output types. These are
designed to program the UTXO ledger by adding other constraints to it in order to sup-
port L2 ledgers on top of the IOTA UTXO ledger with advanced tokenization features.
Here we informally provide an incomplete list of the output types. For detailed informa-
tion, we refer to RFC #38: Output Types for Tokenization and Smart Contracts.

An alias output is an output type which allows building non-forkable chains controlled
by a state controller address specified in the output itself. The alias output is minted
(i.e. newly created) and the protocol assigns it a random and unique ID, known as
the alias address, for the duration of its lifetime. The constraint it brings to the
ledger guarantees that there is always one – and only one – alias output with the
given ID on the ledger. We can always query the alias output by its ID on the ledger.

The alias output can be unlocked by the valid signature of the state controller ad-
dress. Once unlocked as an input in the transaction, one must put exactly one alias
output with the same ID in the outputs of the transaction. The new alias output
can modify the metadata and the state controller address. This way, by consuming
alias output, the state controller (i.e. the private key behind the address) can build
non-forkable chains.

The alias output implements a feature of address aliasing on the ledger: namely,
the ability to change controlling entities (i.e. private keys) of the account, without
changing the address, i.e. transparently to the users of the address.

ISC uses alias outputs for state anchoring, which means committing to the glob-
ally unique state of the chain on the UTXO ledger state. By producing the next
output in the chain we atomically record the next state of the chain on the UTXO
ledger (L1). The address aliasing also makes the identity of the chain decoupled
from the identity of the state controller.

Extended value transfer output (also known as extended output) extends the sim-
ple value transfer output type with configurable validation options. It allows transfer
of IOTA tokens and native assets to a target address, which can be any type of ad-
dress, including the alias address.

Extended value transfer output can be consumed by either providing a signature of
the address, or, if the target address is an alias address, unlocking the correspond-
ing alias output in the same transaction. This way, the state controller of the alias
output also controls all extended outputs with the target address of the alias output.

ISC uses extended value transfer output for on-ledger requests between chains and
addresses. The metadata of the output also bears parameters of the request. The
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output is consumed in the same transaction as the state transition by the alias
output. The semantics of consuming the output is equivalent to “processing the
on-ledger request” to the chain.

The extended value transfer output configuration options also include timelock, ex-
piry deadline for its consumption, and more.

Foundry output is a special output type which extends the ledger with new types of
tokens, the so-called native assets. It enables the minting of new supplies of tokens
and the controlling of them through inflating (creating from thin air) or deflating
(destroying the ones in the possession of the foundry). One foundry output corre-
sponds to the supply of a token on the ledger and the ledger enforces consistency
of the token accounts: only the foundry can create or destroy a specific token. The
foundry can be seen as a central bank with its own “monetary policy”. The monetary
policy in this case is an immutable property of the foundry set upon its creation. It
is enforced by the protocol and foundry output type validation rules. The examples
of specific “monetary policy” can be “no inflation, only deflation”, “fixed supply”, “no
more than 10% annual inflation” or similar. The foundry output itself is controlled
by the alias address that created it; in other words, control of the supply of a specific
token ultimately goes to the controlling private key of the alias output.

NFT output is similar to the alias output, so its constraints guarantee that there is
always one NFT output with a specific ID on the ledger. NFT stands for Non-
Fungible Token. Just like any UTXO, the ownership of the NFT output belongs
to an address, so it can be owned and transferred between accounts on the L1.
Another essential property of the NFT output is that it contains an immutable
proof of origin, enforced by the ledger constraints: whoever creates (or ’mints’)
the NFT output, their public key becomes an immutable part of the NFT output
for the duration of its lifetime.
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